4.4 Article

Sphingomyelinase-induced ceramide production stimulate calcium-independent JNK and PP2A activation following cerebral ischemia

期刊

BRAIN INJURY
卷 23, 期 13-14, 页码 1073-1080

出版社

TAYLOR & FRANCIS LTD
DOI: 10.3109/02699050903379388

关键词

Cerebral ischemia; ceramide; glia; JNK; PP2A

资金

  1. Medical Foundation of Department of Health [H200749]
  2. Jiangsu Province [RC2007062]

向作者/读者索取更多资源

Primary objective: Intracellular calcium overload is considered to be a key pathologic factor for ischemic stroke; however, there are other signal molecules produced in response to ischemic stimuli. The present study investigated the ceramide signal pathway, which is associated with cerebral ischemia in a calcium-independent manner. Methods: Male Sprague-Dawley rats were subjected to 10-minute four-vessel occlusion. Ketamine, a blocker of calcium-ion channels, or TPCK or fumonisin B1, inhibitors of ceramide production in the sphingomyelinase and de novo pathways, respectively, were administrated to the rats prior to inducing ischemia. Ceramide levels were determined by immunofluorescence, protein activity was assessed by immunoblotting and PP2A activity was measured using a protein phosphatase assay system. Results: The morphologic data indicated that ischemia-induced ceramide production was largely restricted to glia cells in the rat hippocampus. TPCK, but not ketamine or fumonisin B1, blocked the ceramide pathway and its downstream molecules, JNK and PP2A. Conclusions: Cerebral ischemia up-regulates the sphingomyelin-ceramide pathway, which involves calcium-independent JNK and PP2A activation in hippocampal glia; this may play a significant role in cerebral lesions post-ischemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据