4.4 Article

Saccade reprogramming in Friedreich ataxia reveals impairments in the cognitive control of saccadic eye movement

期刊

BRAIN AND COGNITION
卷 87, 期 -, 页码 161-167

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bandc.2014.03.018

关键词

Inherited ataxias; Cognition; Attention; Saccades; Cerebellum

资金

  1. National Health and Medical Research Council Australia [454811, 546452, 1037002]
  2. Friedreich Ataxia Research Association, Australasia
  3. Friedreich Ataxia Research Alliance, USA
  4. Monash Research Fellowship

向作者/读者索取更多资源

Although cerebellar dysfunction has known effects on motor function in Friedreich ataxia (FRDA), it remains unclear the extent to which the reprogramming of eye movements (saccades) and inhibition of well-learned automatic responses are similarly compromised in affected individuals. Here we examined saccade reprogramming to assess the ability of people with FRDA to respond toward unexpected changes in either the amplitude or direction of an oddball target. Thirteen individuals with genetically confirmed FRDA and 12 age-matched controls participated in the study. The saccade reprogramming paradigm was used to examine the effect of an unpredictable oddball target on saccade latencies and accuracy when compared to a well-learned sequence of reciprocating movements. Horizontal eye movements were recorded using a scleral search coil eye tracking technique. The results showed a proportionally greater increase in latencies for reprogrammed saccades toward an oddball-direction target in the FRDA group when compared to controls. The FRDA group were also less accurate in primary saccade gain (i.e. ratio of saccade amplitude to target amplitude) when reprogramming saccades toward an unexpected change in direction. No significant group differences were found on any of the oddball-amplitude targets. Significant correlations were revealed between latency and disease severity as measured by the Friedreich Ataxia Rating Scale. These findings provide further support to the view that cognitive changes in FRDA may arise from disruption of cerebellar connections to cortical structures. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据