4.7 Article

Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex

期刊

BRAIN
卷 137, 期 -, 页码 1741-1752

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awu096

关键词

functional magnetic resonance imaging (fMRI); median nerve neuropathy; tactile stimulation; psychomotor performance; finger agnosia

资金

  1. National Center for Complementary and Alternative Medicine (NCCAM), National Institutes of Health [R01-AT004714, R01-AT004714-02S1, P01-AT002048]
  2. National Centre for Research Resources (NCRR) [P41RR14075, S10RR021110]

向作者/读者索取更多资源

The functional significance of brain plasticity seen in carpal tunnel syndrome is unclear. Using functional MRI and bio-behavioural testing, Maeda et al. link blurred primary somatosensory cortical representations of median nerve innervated fingers with symptomatology and impaired psychomotor performance and discrimination accuracy. Neuroplasticity in these patients is thus indeed maladaptive.Carpal tunnel syndrome, a median nerve entrapment neuropathy, is characterized by sensorimotor deficits. Recent reports have shown that this syndrome is also characterized by functional and structural neuroplasticity in the primary somatosensory cortex of the brain. However, the linkage between this neuroplasticity and the functional deficits in carpal tunnel syndrome is unknown. Sixty-three subjects with carpal tunnel syndrome aged 20-60 years and 28 age- and sex-matched healthy control subjects were evaluated with event-related functional magnetic resonance imaging at 3 T while vibrotactile stimulation was delivered to median nerve innervated (second and third) and ulnar nerve innervated (fifth) digits. For each subject, the interdigit cortical separation distance for each digit's contralateral primary somatosensory cortex representation was assessed. We also evaluated fine motor skill performance using a previously validated psychomotor performance test (maximum voluntary contraction and visuomotor pinch/release testing) and tactile discrimination capacity using a four-finger forced choice response test. These biobehavioural and clinical metrics were evaluated and correlated with the second/third interdigit cortical separation distance. Compared with healthy control subjects, subjects with carpal tunnel syndrome demonstrated reduced second/third interdigit cortical separation distance (P < 0.05) in contralateral primary somatosensory cortex, corroborating our previous preliminary multi-modal neuroimaging findings. For psychomotor performance testing, subjects with carpal tunnel syndrome demonstrated reduced maximum voluntary contraction pinch strength (P < 0.01) and a reduced number of pinch/release cycles per second (P < 0.05). Additionally, for four-finger forced-choice testing, subjects with carpal tunnel syndrome demonstrated greater response time (P < 0.05), and reduced sensory discrimination accuracy (P < 0.001) for median nerve, but not ulnar nerve, innervated digits. Moreover, the second/third interdigit cortical separation distance was negatively correlated with paraesthesia severity (r = -0.31, P < 0.05), and number of pinch/release cycles (r = -0.31, P < 0.05), and positively correlated with the second and third digit sensory discrimination accuracy (r = 0.50, P < 0.05). Therefore, reduced second/third interdigit cortical separation distance in contralateral primary somatosensory cortex was associated with worse symptomatology (particularly paraesthesia), reduced fine motor skill performance, and worse sensory discrimination accuracy for median nerve innervated digits. In conclusion, primary somatosensory cortex neuroplasticity for median nerve innervated digits in carpal tunnel syndrome is indeed maladaptive and underlies the functional deficits seen in these patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据