4.8 Article

Exploring the Mechanism of Salt-Induced Signal Suppression in Protein Electrospray Mass Spectrometry Using Experiments and Molecular Dynamics Simulations

期刊

ANALYTICAL CHEMISTRY
卷 87, 期 4, 页码 2434-2442

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac5044016

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Protein analyses by electrospray ionization (ESI) mass spectrometry can suffer from interferences caused by nonvolatile salts. The mechanistic basis of this effect remains to be fully investigated. In the current work we explore the behavior of proteins under native and denaturing conditions in the presence of NaCl, CsCl, and tetrabutyl ammonium chloride (NBu4Cl). All three salts interfere with the formation of clean [M + zH](z)+ protein ions by progressively deteriorating spectral S/N ratios. We propose that salt interferences can be dissected into two independent aspects, i.e., (i) peak splitting by adduct formation and (ii) protein ion suppression. NaCl degrades the spectral quality by forming heterogeneous [M + zH + n(Na H) + m(Cl + H)](z+) ions, while the integrated protein ion intensity remains surprisingly robust. Conversely, NBu4Cl does not cause any adduction, while dramatically reducing the protein ion yield. These findings demonstrate that adduct formation and protein ion suppression are indeed unrelated effects that may occur independently of one another. Other salts, such as CsCl, can give rise to a combination of the two scenarios. Molecular dynamics simulations of water droplets charged with either Na+ or NBu4+ provide insights into the mechanism underlying the observed effects. Na+ containing droplets evolve relatively close to the Rayleigh limit (z/z(R) approximate to 0.74), whereas the z/zR values of NBu4+ charged droplets are considerably lower (similar to 0.59). This difference is due to the high surface affinity of NBu4+, which facilitates charge ejection from the droplet. We propose that the low z/z(R) values encountered in the presence of NBu4+ suppress the Rayleigh fission of parent droplets in the ESI plume, thereby reducing the yield of progeny droplets that represent the precursors of gaseous protein ions. In addition, the rate of solvent evaporation is reduced in the presence of NBu4+. Both of these factors lower the protein signal intensity. NaCl does not interfere with droplet fission, such that protein ions continue to form with high yieldalbeit in heavily adducted form. Our findings expand on earlier proposals of charge competition as a key factor during the ESI process for salt-contaminated solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据