4.7 Article

The cuticular wax inhibitor locus Iw2 in wild diploid wheat Aegilops tauschii: phenotypic survey, genetic analysis, and implications for the evolution of common wheat

期刊

BMC PLANT BIOLOGY
卷 14, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12870-014-0246-y

关键词

Allopolyploid speciation; Cuticluar wax inhibitor; Synthetic wheat; Wheat evolution

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [25292008]

向作者/读者索取更多资源

Background: Cuticular wax production on plant surfaces confers a glaucous appearance and plays important roles in plant stress tolerance. Most common wheat cultivars, which are hexaploid, and most tetraploid wheat cultivars are glaucous; in contrast, a wild wheat progenitor, Aegilops tauschii, can be glaucous or non-glaucous. A dominant non-glaucous allele, Iw2, resides on the short arm of chromosome 2D, which was inherited from Ae. tauschii through polyploidization. Iw2 is one of the major causal genes related to variation in glaucousness among hexaploid wheat. Detailed genetic and phylogeographic knowledge of the Iw2 locus in Ae. tauschii may provide important information and lead to a better understanding of the evolution of common wheat. Results: Glaucous Ae. tauschii accessions were collected from a broad area ranging from Armenia to the southwestern coastal part of the Caspian Sea. Linkage analyses with five mapping populations showed that the glaucous versus non-glaucous difference was mainly controlled by the Iw2 locus in Ae. tauschii. Comparative genomic analysis of barley and Ae. tauschii was then used to develop molecular markers tightly linked with Ae. tauschii Iw2. Chromosomal synteny around the orthologous Iw2 regions indicated that some chromosomal rearrangement had occurred during the genetic divergence leading to Ae. tauschii, barley, and Brachypodium. Genetic associations between specific Iw2-linked markers and respective glaucous phenotypes in Ae. tauschii indicated that at least two non-glaucous accessions might carry other glaucousness-determining loci outside of the Iw2 locus. Conclusion: Allelic differences at the Iw2 locus were the main contributors to the phenotypic difference between the glaucous and non-glaucous accessions of Ae. tauschii. Our results supported the previous assumption that the D-genome donor of common wheat could have been any Ae. tauschii variant that carried the recessive iw2 allele.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据