4.2 Article

Anaesthesia generates neuronal insulin resistance by inducing hypothermia

期刊

BMC NEUROSCIENCE
卷 9, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2202-9-100

关键词

-

资金

  1. Alzheimer's Research Trust [ART/NCG2007/A1, ART/PG/2005/1]
  2. Diabetes UK Senior Fellowship [BDA:RD02/0002473)]
  3. Alzheimers Research UK [ART-PG2005-1] Funding Source: researchfish

向作者/读者索取更多资源

Background: Anaesthesia is commonly employed prior to surgical investigations and to permit icv injections in rodents. Indeed it is standard practise in many studies examining the subsequent actions of hormones and growth factors on the brain. Recent evidence that the basal activity of specific intracellular signalling proteins can be affected by anaesthesia prompted us to examine the effect of anaesthesia not only on the basal activity but also the insulin sensitivity of the major insulin signalling pathways. Results: We find that urethane-and ketamine-induced anaesthesia results in rapid activation of the phosphatidylinositol (PI) 3-kinase-protein kinase B (PKB) signalling pathway in the brain, increases tau phosphorylation while at the same time reducing basal activity of the Ras-ERK pathway. Subsequent injection of insulin does not alter the activity of either the PI 3-kinase or ERK signalling pathways, indicating a degree of neuronal molecular insulin resistance. However, if body temperature is maintained during anaesthesia then there is no alteration in the basal activity of these signalling molecules. Subsequent response of both pathways to insulin injection is restored. Conclusion: The data is consistent with a hypothermia related alteration in neuronal signalling following anaesthesia, and emphasises the importance of maintaining the body temperature of rodents when monitoring insulin (or growth factor/neurotrophic agent) action in the brain of anesthetised rodents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据