3.9 Review

Human single-stranded DNA binding proteins are essential for maintaining genomic stability

期刊

BMC MOLECULAR BIOLOGY
卷 14, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2199-14-9

关键词

Single-stranded DNA binding proteins (SSBs); Oligonucleotide/oligosaccharide binding (OB)-fold; Double-strand DNA break (DSB) repair; Homology-directed repair (HDR); Translesion synthesis; Nucleotide excision repair (NER); Replication fork restart; Cell cycle checkpoint activation; Telomere maintenance

资金

  1. Australian Research Council (ARC)
  2. Cancer Council Queensland
  3. National Health and Medical Research Council (NHMRC)

向作者/读者索取更多资源

The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据