4.7 Article

All-Food-Seq (AFS): a quantifiable screen for species in biological samples by deep DNA sequencing

期刊

BMC GENOMICS
卷 15, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2164-15-639

关键词

Illumina; Next-generation sequencing; Real-time PCR; Species identification; Metagenomics

资金

  1. Johannes Gutenberg University of Mainz Center for Computational Sciences (SRFN)
  2. JGU Mainz intramural funding program
  3. Ministry of Justice and for Consumer Safety Rhineland-Palatinate, Germany

向作者/读者索取更多资源

Background: DNA-based methods like PCR efficiently identify and quantify the taxon composition of complex biological materials, but are limited to detecting species targeted by the choice of the primer assay. We show here how untargeted deep sequencing of foodstuff total genomic DNA, followed by bioinformatic analysis of sequence reads, facilitates highly accurate identification of species from all kingdoms of life, at the same time enabling quantitative measurement of the main ingredients and detection of unanticipated food components. Results: Sequence data simulation and real-case Illumina sequencing of DNA from reference sausages composed of mammalian (pig, cow, horse, sheep) and avian (chicken, turkey) species are able to quantify material correctly at the 1% discrimination level via a read counting approach. An additional metagenomic step facilitates identification of traces from animal, plant and microbial DNA including unexpected species, which is prospectively important for the detection of allergens and pathogens. Conclusions: Our data suggest that deep sequencing of total genomic DNA from samples of heterogeneous taxon composition promises to be a valuable screening tool for reference species identification and quantification in biosurveillance applications like food testing, potentially alleviating some of the problems in taxon representation and quantification associated with targeted PCR-based approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据