4.7 Article

Transcriptomics reveals extensive inducible biotransformation in the soil-dwelling invertebrate Folsomia candida exposed to phenanthrene

期刊

BMC GENOMICS
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2164-10-236

关键词

-

资金

  1. The Netherlands Genomics Initiative (Ecogenomics)

向作者/读者索取更多资源

Background: Polycyclic aromatic hydrocarbons are common pollutants in soil, have negative effects on soil ecosystems, and are potentially carcinogenic. The Springtail (Collembola) Folsomia candida is often used as an indicator species for soil toxicity. Here we report a toxicogenomic study that translates the ecological effects of the polycyclic aromatic hydrocarbon phenanthrene in soil to the early transcriptomic responses in Folsomia candida. Results: Microarrays were used to examine two different exposure concentrations of phenanthrene, namely the EC10 (24.95 mg kg(-1) soil) and EC50 (45.80 mg kg(-1) soil) on reproduction of this springtail, which evoked 405 and 251 differentially expressed transcripts, respectively. Fifty transcripts were differential in response to either concentration. Many transcripts encoding xenobiotic detoxification and biotransformation enzymes (phases I, II, and III) were upregulated in response to either concentration. Furthermore, indications of general and oxidative stress were found in response to phenanthrene. Chitin metabolism appeared to be disrupted particularly at the low concentration, and protein translation appeared suppressed at the high concentration of phenanthrene; most likely in order to reallocate energy budgets for the detoxification process. Finally, an immune response was evoked especially in response to the high effect concentration, which was also described in a previous transcriptomic study using the same effect concentration (EC50) of cadmium. Conclusion: Our study provides new insights in the molecular mode of action of the important polluting class of polycyclic aromatic hydrocarbons in soil animals. Furthermore, we present a fast, sensitive, and specific soil toxicity test which enhances traditional tests and may help to improve current environmental risk assessments and monitoring of potentially polluted sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据