4.7 Article

Information-theoretic gene-gene and gene-environment interaction analysis of quantitative traits

期刊

BMC GENOMICS
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2164-10-509

关键词

-

资金

  1. Center for Protein Therapeutics at the University of Buffalo
  2. National Multiple Sclerosis Society [RG3743]
  3. NIH [5R01-HL049609-14, 1R01-AG021917-01A1]
  4. University of Minnesota
  5. Minnesota Supercomputing Institute

向作者/读者索取更多资源

Background: The purpose of this research was to develop a novel information theoretic method and an efficient algorithm for analyzing the gene-gene (GGI) and gene-environmental interactions (GEI) associated with quantitative traits (QT). The method is built on two information-theoretic metrics, the k-way interaction information (KWII) and phenotype-associated information (PAI). The PAI is a novel information theoretic metric that is obtained from the total information correlation (TCI) information theoretic metric by removing the contributions for inter-variable dependencies (resulting from factors such as linkage disequilibrium and common sources of environmental pollutants). Results: The KWII and the PAI were critically evaluated and incorporated within an algorithm called CHORUS for analyzing QT. The combinations with the highest values of KWII and PAI identified each known GEI associated with the QT in the simulated data sets. The CHORUS algorithm was tested using the simulated GAW15 data set and two real GGI data sets from QTL mapping studies of high-density lipoprotein levels/atherosclerotic lesion size and ultra-violet light-induced immunosuppression. The KWII and PAI were found to have excellent sensitivity for identifying the key GEI simulated to affect the two quantitative trait variables in the GAW15 data set. In addition, both metrics showed strong concordance with the results of the two different QTL mapping data sets. Conclusion: The KWII and PAI are promising metrics for analyzing the GEI of QT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据