4.7 Article

Working regeneratively across scales-insights from nature applied to the built environment

期刊

JOURNAL OF CLEANER PRODUCTION
卷 109, 期 -, 页码 42-52

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2015.02.037

关键词

Regenerative design; Ecology; Worldviews; Living systems; Built environment; Practice

向作者/读者索取更多资源

Regenerative design and development calls for a paradigm shift from a 'mechanistic' to the 'ecological' or living systems worldview that has emerged from living systems sciences over the last century. The challenge for design practitioners educated and now working in a field mainly shaped by a mechanistic worldview is two-fold: first, to develop an understanding of how life and living systems work and, second, to translate that understanding into application. The benefit of taking on this challenge is that understanding natural systems offers powerful insights into how to work across different scales of the built environment. This article looks at key and interrelated living systems' principles and discusses how they translate into design and development practices, using examples of how actual projects worked across multiple scales. Principles considered include the nested or holarchic nature of living systems and the fact that a living system is not separable from its environment. Mapping a design project as a socio-ecological system nested within its immediate and larger contexts shifts designers' attention to the unique and distinctive character of the project environment and the reciprocal influence project and environment exercise on each other. A second principle, that ecosystems' self-organizing and self-regenerating capacity depends on its members carrying out their systemic roles, provides the basis for defining and designing a distinctive and generative role for a project within its place. This role enables the project to be both more valuable and valued as a source of greater viability and vitality and, drawing on the first principle, to have a positive influence across different scales of nested wholes. The third principle relates to the webs of dynamic flows and metabolic exchanges that enable life to continuously produce, repair, and perpetuate itself. Using insights gained from the understanding of the essence of a place, design practitioners are able to identify transformative nodal points within those webs where targeted acupuncture interventions, sometimes small, can influence the health and renewal of the whole system. In conclusion, the article first summarizes how working from an understanding of living systems principles provides insights into working regeneratively across and within different scales. Second, it addresses the need for the role of designers to shift and for new capabilities to be developed in order to incorporate those insights into new development and design practices. Third, it highlights some of the challenges design practitioners might face when implementing a living systems approach within the complexity of multi-disciplinary design projects. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Green & Sustainable Science & Technology

Relative evaluation of probabilistic methods for spatio-temporal wind forecasting

Lars odegaard Bentsen, Narada Dilp Warakagoda, Roy Stenbro, Paal Engelstad

Summary: This study investigates uncertainty modeling in wind power forecasting using different parametric and non-parametric methods. Johnson's SU distribution is found to outperform Gaussian distributions in predicting wind power. This research contributes to the literature by introducing Johnson's SU distribution as a candidate for probabilistic wind forecasting.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

Comparison of ethane recovery processes for lean gas based on a coupled model

Xing Liu, Qiuchen Wang, Yunhao Wen, Long Li, Xinfang Zhang, Yi Wang

Summary: This study analyzes the characteristics of process parameters in three lean gas ethane recovery processes and establishes a prediction and multiobjective optimization model for ethane recovery and system energy consumption. A new method for comparing ethane recovery processes for lean gas is proposed, and the addition of extra coolers improves the ethane recovery. The support vector regression model based on grey wolf optimization demonstrates the highest prediction accuracy, and the multiobjective multiverse optimization algorithm shows the best optimization performance and diversity in the solutions.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

A novel deep-learning framework for short-term prediction of cooling load in public buildings

Cairong Song, Haidong Yang, Xian-Bing Meng, Pan Yang, Jianyang Cai, Hao Bao, Kangkang Xu

Summary: The paper proposes a novel deep learning-based prediction framework, aTCN-LSTM, for accurate cooling load predictions. The framework utilizes a gate-controlled multi-head temporal convolutional network and a sparse probabilistic self-attention mechanism with a bidirectional long short-term memory network to capture both temporal and long-term dependencies in the cooling load sequences. Experimental results demonstrate the effectiveness and superiority of the proposed method, which can serve as an effective guide for HVAC chiller scheduling and demand management initiatives.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

The impact of social interaction and information acquisition on the adoption of soil and water conservation technology by farmers: Evidence from the Loess Plateau, China

Zhe Chen, Xiaojing Li, Xianli Xia, Jizhou Zhang

Summary: This study uses survey data from the Loess Plateau in China to evaluate the impact of social interaction on the adoption of soil and water conservation (SWC) technology by farmers. The study finds that social interaction increases the likelihood of farmers adopting SWC, and internet use moderates this effect. The positive impact of social interaction on SWC adoption is more pronounced for farmers in larger villages and those who join cooperative societies.

JOURNAL OF CLEANER PRODUCTION (2024)

Article Green & Sustainable Science & Technology

Study on synergistic heat transfer enhancement and adaptive control behavior of baffle under sudden change of inlet velocity in a micro combustor

Chenghua Zhang, Yunfei Yan, Kaiming Shen, Zongguo Xue, Jingxiang You, Yonghong Wu, Ziqiang He

Summary: This paper reports a novel method that significantly improves combustion performance, including heat transfer enhancement under steady-state conditions and adaptive stable flame regulation under velocity sudden increase.

JOURNAL OF CLEANER PRODUCTION (2024)