3.9 Article

Micro-Computed Tomographic Evaluation of Fetal Skeletal Changes Induced by All-Trans-Retinoic Acid in Rats and Rabbits

出版社

WILEY
DOI: 10.1002/bdrb.20267

关键词

all-trans-retinoic acid; retinoic acid; skeletal evaluation; micro-Computed Tomography; micro-CT; developmental toxicity; alizarin red staining

向作者/读者索取更多资源

BACKGROUND: Our laboratory has been conducting positive control studies to evaluate the utility of micro-computed tomography (micro-CT) for qualitative evaluation of fetal skeletal morphology. All-trans-retinoic acid (atRA) was used to produce a different spectrum of defects compared to our previous studies with boric acid and hydroxyurea. METHODS: Groups of five mated Crl:CD(SD) female rats each were administered vehicle or atRA (2.5-50 mg/kg) on CD 10, and groups of four mated Dutch Belted rabbits each were dosed with vehicle or atRA (6.25-25 mg/kg) on GD 9. Cesarean sections were performed on GD 21 and 28, respectively. Following external examination the viscera were removed and fetuses scanned in a micro-CT imaging system. Fetuses were subsequently stained with alizarin red. Skeletal morphology was evaluated by each method without the knowledge of treatment group. Total bone mineral content (BMC) of each fetus was quantitated using the micro-CT images. RESULTS: In rats there were dose-related increases in the incidence of extra lumbar vertebra and non-dose-related increases in supernumerary ribs at all dose levels. There were decreases in mean number of ossified sacrocaudal vertebra at >= 5 mg/kg, and increases in skull bone malformations at >= 10 mg/kg. Rabbits were less sensitive on a mg/kg basis since skeletal malformations and a decrease in mean number of ossified sacrocaudal vertebra were observed only in the 25-mg/kg group. Micro-CT evaluation detected essentially the same incidence of skeletal abnormalities as seen in alizarin red-stained rat and rabbit fetuses. BMC analysis showed a trend toward slight decreases in atRA-treated rats, but no notable changes in rabbits. CONCLUSIONS: These results add support to our previous work that demonstrates that micro-CT imaging can effectively assess rat and rabbit fetal skeletal morphology. Birth Defects Res (Part B) 89:408-417, 2010. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据