4.3 Article

Metabolic Engineering and Transhydrogenase Effects on NADPH Availability in Escherichia coli

期刊

BIOTECHNOLOGY PROGRESS
卷 29, 期 5, 页码 1124-1130

出版社

WILEY
DOI: 10.1002/btpr.1765

关键词

E; coli; redox; transhydrogenase; metabolically engineered strain

资金

  1. National Science Foundation [CBET-0828516]
  2. NIH [R01GM090152]

向作者/读者索取更多资源

The synthesis of several industrially useful compounds are cofactor-dependent, requiring reducing equivalents like NADPH in enzymatic reactions leading up to the synthesis of high-value compounds like polymers, chiral alcohols, and antibiotics. However, NADPH is costly and has limited intracellular availability. This study focuses on the study of the effect of the two transhydrogenase enzymes of Escherichia coli, PntAB and UdhA (SthA) on reducing equivalents-dependent biosynthesis. The production of (S)-2-chloropropionate from 2-chloroacrylate is used as a model system for monitoring NADPH availability because 2-haloacrylate reductase, the enzyme catalyzing the one-step conversion to (S)-2-chloropropionate in the synthesis pathway, requires NADPH as a cofactor. Results suggest that the presence of UdhA increases product yield and NADPH availability while the presence of PntAB has the opposite effect. A maximum product yield of 1.4 mol product/mol glucose was achieved aerobically in a pnt-deletion strain with udhA overexpression, a 150% improvement over the wild-type control strain. (c) 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1124-1130, 2013

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据