4.5 Article

Cooperation and cheating in microbial exoenzyme production - Theoretical analysis for biotechnological applications

期刊

BIOTECHNOLOGY JOURNAL
卷 5, 期 7, 页码 751-758

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.200900303

关键词

Biochemical engineering; Evolutionary game theory; Extracellular enzymes; Optimization of enzyme synthesis; Systems biology

资金

  1. German-Israeli Foundation
  2. DFG (Germany, within the Jena School for Microbial Communication)

向作者/读者索取更多资源

The engineering of microorganisms to produce a variety of extracellular enzymes (exoenzymes), for example for producing renewable fuels and in biodegradation of xenobiotics, has recently attracted increasing interest. Productivity is often reduced by cheater mutants, which are deficient in exoenzyme production and benefit from the product provided by the cooperating cells. We present a game-theoretical model to analyze population structure and exoenzyme productivity in terms of biotechnologically relevant parameters. For any given population density, three distinct regimes are predicted: when the metabolic effort for exoenzyme production and secretion is low, all cells cooperate; at intermediate metabolic costs, cooperators and cheaters coexist; while at high costs, all cells use the cheating strategy. These regimes correspond to the harmony game, snowdrift game, and Prisoner's Dilemma, respectively. Thus, our results indicate that microbial strains engineered for exoenzyme production will not, under appropriate conditions, be outcompeted by cheater mutants. We also analyze the dependence of the population structure on cell density. At low costs, the fraction of cooperating cells increases with decreasing cell density and reaches unity at a critical threshold. Our model provides an estimate of the cell density maximizing exoenzyme production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据