4.6 Article

Fouling of an Anion Exchange Chromatography Operation in a Monoclonal Antibody Process: Visualization and Kinetic Studies

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 110, 期 9, 页码 2425-2435

出版社

WILEY
DOI: 10.1002/bit.24898

关键词

chromatography resin fouling; scanning electron microscopy; confocal laser scanning microscopy; anion exchange chromatography; therapeutic protein

资金

  1. Pfizer
  2. Engineering and Physical Sciences Research Council for the IMRC in Bioprocessing
  3. EPSRC [EP/E001599/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/E001599/1, GR/R33878/01] Funding Source: researchfish

向作者/读者索取更多资源

Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column studies were applied to characterize a case study where fouling had been observed during process development. The fouling was found to occur on an anion exchange (AEX) polishing step following a protein A affinity capture step in a process for the purification of a monoclonal antibody. Fouled resin samples analyzed by SEM and batch uptake experiments indicated that after successive batch cycles, significant blockage of the pores at the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were performed using CLSM to allow temporal and spatial measurements of protein adsorption within the resin, for clean, partially fouled and extensively fouled resin samples. These samples were packed within a miniaturized flowcell and challenged with fluorescently labeled albumin that enabled in situ measurements. The results indicated that the foulant has a significant impact on the kinetics of adsorption, severely decreasing the protein uptake rate, but only results in a minimal decrease in saturation capacity. The impact of the foulant on the kinetics of adsorption was further investigated by loading BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate during BSA loading, the capacity of the resin was recovered. These data support the hypothesis that the foulant is located on the particle surface, only penetrating the particle to a limited degree. The increased understanding into the nature of the fouling can help in the continued process development of this industrial example. Biotechnol. Bioeng. 2013; 110:2425-2435. (c) 2013 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据