4.7 Review

Metabolic reengineering invoked by microbial systems to decontaminate aluminum: Implications for bioremediation technologies

期刊

BIOTECHNOLOGY ADVANCES
卷 31, 期 2, 页码 266-273

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biotechadv.2012.11.008

关键词

Microorganisms; Aluminum; Bioremediation; Biofilters; Metabolism

资金

  1. Industry Canada
  2. Ministry of Environment
  3. Ontario
  4. NATO
  5. Laurentian University
  6. NSERC

向作者/读者索取更多资源

As our reliance on aluminum (Al) increases, so too does its presence in the environment and living systems. Although generally recognized as safe, its interactions with most living systems have been nefarious. This review presents an overview of the noxious effects of Al and how a subset of microbes can rework their metabolic pathways in order to survive an Al-contaminated environment. For instance, in order to expulse the metal as an insoluble precipitate, Pseudomonas fluorescens shuttles metabolites toward the production of organic acids and lipids that play key roles in chelating, immobilizing and exuding Al. Further, the reconfiguration of metabolic modules enables the microorganism to combat the dearth of iron (Fe) and the excess of reactive oxygen species (ROS) promoted by Al toxicity. While in Rhizobium spp., exopolysaccharides have been invoked to sequester this metal, an ATPase is known to safeguard Anoxybacillus gonensis against the trivalent metal. Hydroxyl, carboxyl and phosphate moieties have also been exploited by microbes to trap Al. Hence, an understanding of the metabolic networks that are operative in microorganisms residing in polluted environments is critical in devising bioremediation technologies aimed at managing metal wastes. Metabolic engineering is essential in elaborating effective biotechnological processes to decontaminate metal-polluted surroundings. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据