4.7 Article Proceedings Paper

Automatic corn (Zea mays) kernel inspection system using novelty detection based on principal component analysis

期刊

BIOSYSTEMS ENGINEERING
卷 117, 期 -, 页码 94-103

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.biosystemseng.2013.09.003

关键词

-

向作者/读者索取更多资源

Corn (Zea mays) kernel processing companies evaluate the quality of kernels to determine the price of a batch. Human inspectors in labs inspect a reduced set of kernels to estimate the proportion of damaged kernels in any given lot. The visual differences between good and damaged kernels may be minor and, therefore, difficult to discern. Our goal is to design a computer vision system that enables the automatic evaluation of the quality of corn lots. To decide if an individual kernel can be accepted or rejected, it is necessary to design a method to detect defects, as well as quantify the defective proportions. A setup to work inline and an approach to identify damaged kernels that combines algorithm-based computer vision techniques of novelty detection and principal component analysis (PCA) is presented. Experiments were carried out in three colour spaces using 450 dent corn kernels previously classified by experts. Results show that the method is promising (92% success) but extensions are recommended to further improve results. (C) 2013 IAgrE. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据