4.8 Article

Comparative label-free monitoring of immunotoxin efficacy in 2D and 3D mamma carcinoma in vitro models by impedance spectroscopy

期刊

BIOSENSORS & BIOELECTRONICS
卷 53, 期 -, 页码 370-376

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2013.09.048

关键词

Impedance spectroscopy; 3D tumor model; Immunotoxins; Microcavity array; Interdigital electrode array

资金

  1. German Research Foundation (DFG) [SFB610]
  2. state of Saxony
  3. European Union (SMWK/EFRE)

向作者/读者索取更多资源

For selective killing of tumor cells, there are many novel and promising therapeutic approaches like immunotoxins. However, on the long way to clinical application, especially in vitro approved biologicals often fail due to loss of target sensitivity and efficacy in vivo. This is mostly explained with degradation or penetration disability in vivo. Although, these problems are well known, until today, there are no in vitro systems for reliable monitoring and quantification of therapeutic efficacy in 3D tumor models and the direct comparison to results from 2D models. In this context, we developed a combined label-free impedimetric monitoring system using our self-developed planar interdigital electrode arrays and our unique microcavity array technology. Therefore, we could demonstrate the time and concentration dependent monitoring and quantification of therapeutic efficacy in a 2D and 3D mamma carcinoma model. In detail, we synthesized a novel modular immunotoxin B3(dsFv)-PE38 (B3-PE38) in which the antibody fragment and the protein toxin are polyionic linked together. We compared the efficacy of the immunotoxin B3-PE38, the toxin E8C-PE38 (PE38) and the small molecule chemotherapeutic paclitaxel. The impedimetric screening revealed the highest cytotoxicity for the immunotoxin B3-PE38 in the 2D model. More strikingly, the immunotoxin efficacy was substantially higher in the 3D model when compared to PE38 and paclitaxel even though having a considerably lower penetration capability than paclitaxel. So our novel impedimetric monitoring system offers the comparative efficacy quantification of novel therapeutics in 2D and 3D in vitro tumor models. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据