4.8 Article

A novel combined thermometric and amperometric biosensor for lactose determination based on immobilised cellobiose dehydrogenase

期刊

BIOSENSORS & BIOELECTRONICS
卷 31, 期 1, 页码 251-256

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2011.10.027

关键词

Combined thermometric/amperometric biosensor; Enzyme thermistor; Flow injection analysis; Cellobiose dehydrogenase; Lactose

资金

  1. Swedish Research Council (VR)

向作者/读者索取更多资源

A novel method for lactose determination in milk is proposed. It is based on oxidation of lactose by cellobiose dehydrogenase (CDH) from the basidiomycete Phanerochaete chrysosporium, immobilised in an enzyme reactor. The reactor was prepared by cross-linking CDH onto aminopropyl-silanised controlled pore glass (CPG) beads using glutaraldehyde. The combined biosensor worked in flow injection analysis (FIA) mode and was developed for simultaneous monitoring of the thermometric signal associated with the enzymatic oxidation of lactose using p-benzoquinone as electron acceptor and the electrochemically generated current associated with the oxidation of the hydroquinone formed. A highly reproducible linear response for lactose was obtained between 0.05 mM and 30 mM. For a set of more than 500 samples an R.S.D. of less than 10% was achieved. The assay time was ca. 2 min per sample. The sensor was applied for the determination of lactose in dairy milk samples (milk with a fat content of 1.5% or 3% and also lactose free milk). No sample preparation except dilution with buffer was needed. The proposed method is rapid, suitable for repeated use and allows the possibility to compare results from two different detection methods, thus providing a built-in quality assurance. Some differences in the response observed between the methods indicate that the dual approach can be useful in mechanistic studies of redox enzymes. In addition, a dual system opens up interesting possibilities for studies of enzyme properties and mechanisms. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Agriculture, Multidisciplinary

Protein components of water extracts from fruiting bodies of the reishi mushroom Ganoderma lucidum contribute to the production of functional molecules

Kei Kumakura, Chiaki Hori, Hiroki Matsuoka, Kiyohiko Igarashi, Masahiro Samejima

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE (2019)

Article Physics, Multidisciplinary

Bridging the Micro-Macro Gap between Single-Molecular Behavior and Bulk Hydrolysis Properties of Cellulase

Takahiro Ezaki, Katsuhiro Nishinari, Masahiro Samejima, Kiyohiko Igarashi

PHYSICAL REVIEW LETTERS (2019)

Review Biochemistry & Molecular Biology

Discovery of a novel quinohemoprotein from a eukaryote and its application in electrochemical devices

Kouta Takeda, Kiyohiko Igarashi, Makoto Yoshida, Nobuhumi Nakamura

BIOELECTROCHEMISTRY (2020)

Article Biotechnology & Applied Microbiology

The Lipomyces starkeyi gene Ls120451 encodes a cellobiose transporter that enables cellobiose fermentation in Saccharomyces cerevisiae

Jorg C. de Ruijter, Kiyohiko Igarashi, Merja Penttila

FEMS YEAST RESEARCH (2020)

Article Multidisciplinary Sciences

Convergent evolution of processivity in bacterial and fungal cellulases

Taku Uchiyama, Takayuki Uchihashi, Akihiko Nakamura, Hiroki Watanabe, Satoshi Kaneko, Masahiro Samejima, Kiyohiko Igarashi

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2020)

Article Biochemistry & Molecular Biology

In Vitro Synthesis and Self-Assembly of Cellulose II Nanofibrils Catalyzed by the Reverse Reaction of Clostridium thermocellum Cellodextrin Phosphorylase

Robert Pylkkanen, Pezhman Mohammadi, Suvi Arola, Jorg C. de Ruijter, Naoki Sunagawa, Kiyohiko Igarashi, Merja Penttila

BIOMACROMOLECULES (2020)

Article Biochemistry & Molecular Biology

Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium

Kaori Matsuyama, Naomi Kishine, Zui Fujimoto, Naoki Sunagawa, Toshihisa Kotake, Yoichi Tsumuraya, Masahiro Samejima, Kiyohiko Igarashi, Satoshi Kaneko

JOURNAL OF BIOLOGICAL CHEMISTRY (2020)

Article Materials Science, Paper & Wood

Enzymatic synthesis of cellulose in space: gravity is a crucial factor for building cellulose II gel structure

Tomohiro Kuga, Naoki Sunagawa, Kiyohiko Igarashi

Summary: This study synthesized cellulose in space to investigate the role of gravity in the formation of cellulose crystals and highly ordered structures. The results showed that gravity played a significant role in cellulose II crystal sedimentation and the building of network structure, and cellulose synthesized in space had a more uniform particle distribution compared to cellulose synthesized on the ground.

CELLULOSE (2022)

Article Biochemistry & Molecular Biology

Comparison of glycoside hydrolase family 3 β-xylosidases from basidiomycetes and ascomycetes reveals evolutionarily distinct xylan degradation systems

Keisuke Kojima, Naoki Sunagawa, Nils Egil Mikkelsen, Henrik Hansson, Saeid Karkehabadi, Masahiro Samejima, Mats Sandgren, Kiyohiko Igarashi

Summary: In this study, two xylan enzymes were compared to gain insights into their structures and catalytic mechanisms. The results showed that the two enzymes exhibited different degradation efficiencies and specificities towards xylooligosaccharides of different lengths. Additionally, it was found that wood-decaying fungi and molds use different enzymes for xylan degradation, possibly due to their distinct environmental niches.

JOURNAL OF BIOLOGICAL CHEMISTRY (2022)

Article Biochemistry & Molecular Biology

Acetylated Xylan Degradation by Glycoside Hydrolase Family 10 and 11 Xylanases from the White-rot Fungus Phanerochaete chrysasporium

Keisuke Kojima, Naoki Sunagawa, Yoshihisa Yoshimi, Theodora Tryfona, Masahiro Samejima, Paul Dupree, Kiyohiko Igarashi

Summary: This study compares the activity of two types of xylanases in degrading acetylated and deacetylated xylan. The results suggest that the degradability of xylan by GH11 xylanases is highly dependent on the extent of acetyl group substitution. Additionally, the study found a potential coevolution relationship between GH11 xylanases and CE1 AXEs.

JOURNAL OF APPLIED GLYCOSCIENCE (2022)

Article Multidisciplinary Sciences

Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface

Taku Uchiyama, Takayuki Uchihashi, Takuya Ishida, Akihiko Nakamura, Josh V. Vermaas, Michael F. Crowley, Masahiro Samejima, Gregg T. Beckham, Kiyohiko Igarashi

Summary: Efficient depolymerization of crystalline cellulose requires the cooperative action of multiple cellulolytic enzymes. This study demonstrates that the synergistic activity between cellobiohy-drolases and a lytic polysaccharide monooxygenase can enhance the activity and performance of the enzymes by producing chain breaks and amorphizing the crystalline surface of cellulose.

SCIENCE ADVANCES (2022)

Article Biochemistry & Molecular Biology

Single Amino Acid Mutation of Pyranose 2-Oxidase Results in Increased Specificity for Diabetes Biomarker 1,5-Anhydro-D-Glucitol

Takahiro Fujii, Kiyohiko Igarashi, Masahiro Samejima

JOURNAL OF APPLIED GLYCOSCIENCE (2020)

Article Biochemistry & Molecular Biology

Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete Phanerochaete chrysosporium

Sora Yamaguchi, Naoki Sunagawa, Mikako Tachioka, Kiyohiko Igarashi, Masahiro Samejima

JOURNAL OF APPLIED GLYCOSCIENCE (2020)

Article Biochemistry & Molecular Biology

Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete chrysosporium

Kiyohiko Igarashi, Satoshi Kaneko, Motomitsu Kitaoka, Masahiro Samejima

JOURNAL OF APPLIED GLYCOSCIENCE (2020)

Review Materials Science, Paper & Wood

Origin and Diversity of Wood Decay Fungi Revealed by Genome-Based Analyses

Chiaki Hori, Makoto Yoshida, Kiyohiko Igarashi, Masahiro Samejima

MOKUZAI GAKKAISHI (2019)

Article Biophysics

An integrated centrifugal microfluidic strategy for point-of-care complete blood counting

Reza Khodadadi, Manouchehr Eghbal, Hamideh Ofoghi, Alireza Balaei, Ali Tamayol, Karen Abrinia, Amir Sanati-Nezhad, Mohamadmahdi Samandari

Summary: This paper introduces an integrated portable centrifugal microfluidic system that automates cell and fluid manipulation for complete blood counting (CBC) analysis at the point-of-care (POC). The system utilizes a specially designed microfluidic disc for cell separation, solution metering and mixing, and cell counting, and is equipped with a custom script for automated quantification of cells. The proposed method shows a strong correlation with the gold standard hematology analyzer for various blood parameters. The portable system offers simplicity, affordability, and low power consumption, making it a potential solution for improving healthcare delivery in resource-limited settings and remote areas.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Immunity testing against COVID-19 from blood by an IoT-enabled and AI-controlled multiplexed microfluidic platform

Nabil H. Bhuiyan, Joon S. Shim

Summary: Developing herd immunity is crucial for changing the course of the COVID-19 pandemic. An AI-driven point-of-care testing platform has been proposed for analyzing the body's response to SARS-CoV-2, and it has been successfully used for quantifying viral proteins and antibodies in blood samples. A data-receptive web-based dashboard system has also been developed for real-time analysis of herd immunity progress.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Influence of shear stress on electroactive biofilm characteristics and performance in microbial fuel cells

Alexiane Godain, Timothy M. Vogel, Pascal Fongarland, Naoufel Haddour

Summary: This study provides comprehensive insights into the intricate relationship between shear stress and electroactive biofilms in microbial fuel cells, highlighting the pivotal role of shear stress in influencing the growth kinetics, electrical performance, and physical structure of the biofilms. The study also emphasizes the complexities of extracellular electron transfer mechanisms and the need for complementary metaproteomic analyses.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Cheap and portable paper chip with terrific oxidase-like activity and SERS enhancement performance for SERS-colorimetric bimodal detection of intracellular glutathione

Linjie Wang, Yixin Chen, Yang Ji, Shujun Zheng, Fei Wang, Caolong Li

Summary: A paper-based biosensor incorporating surface-enhanced Raman spectroscopy (SERS) and colorimetric detection has been developed for efficient quantification of intracellular glutathione (GSH). The biosensor exhibits excellent selectivity, stability, and precision, with low detection limits in both SERS and colorimetric modes. It has been successfully utilized for intracellular GSH detection and validated against a commercial GSH assay kit.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Tracking the EMT-like phenotype switching during targeted therapy in melanoma by analyzing extracellular vesicle phenotypes

Quan Zhou, Jing Wang, Zhen Zhang, Alain Wuethrich, Richard J. Lobb, Matt Trau

Summary: This study presents a biosensor for sensitive detection of EMT-associated biomarkers on extracellular vesicles (EVs) surfaces during targeted therapy. Through longitudinal monitoring of patients, the biosensor shows its ability to identify the EMT-like phenotype switching on circulating EVs during the development of resistance.

BIOSENSORS & BIOELECTRONICS (2024)

Review Biophysics

Protease detection in the biosensor era: A review

Pratika Rai, Sabrina N. Hoba, Celine Buchmann, Robert J. Subirana-Slotos, Christian Kersten, Tanja Schirmeister, Kristina Endres, Bernd Bufe, Alexey Tarasov

Summary: Proteases have been proposed as potential biomarkers for various pathological conditions. The development of protease biosensors offers a more efficient way to investigate dysregulated proteases. This review article presents different optical and electrochemical detection methods for designing biosensors for all major protease families.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Controllable self-assembled DNA nanomachine enable homogeneous rapid electrochemical one-pot assay of lung cancer circulating tumor cells

Chengxin Liu, Xu Shen, Li Yan, Runlian Qu, Yue Wang, Yaqin He, Zixuan Zhan, Piaopiao Chen, Feng Lin

Summary: In this study, a homogeneous rapid electrochemical aptasensor was developed to quantitatively detect CTCs in lung cancer patients. The aptasensor utilized a DNA nanosphere structure and a complementary aptamer to specifically detect mucin 1 as a marker for CTCs. The assay exhibited high specificity and sensitivity, and the results were consistent with other detection methods.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Therapeutic drug monitoring mediated by the cooperative chemical and electromagnetic effects of Ti3C2TX modified with Ag nanocubes

Danni Xue, Xing Dai, Jialong Zhao, Jiayao Zhang, Huan Liu, Kui Liu, Tao Xu, Chenjie Gu, Xingfei Zhou, Tao Jiang

Summary: In this study, a dual-enhancement SERS substrate based on Ti3C2TX and Ag nanocubes was fabricated for precise quantification of ritonavir and ibrutinib in serum. The formation of numerous electromagnetic hotspots between Ag nanocubes facilitated effective photo-induced charge transfer. The composite substrate showed excellent sensitivity, achieving low detection limits and high recoveries, making it promising for monitoring and identification of clinical blood drug concentration.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

CRISPR-Cas12a powered hybrid nanoparticle for extracellular vesicle aggregation and in-situ microRNA detection

Tenghua Zhang, Zihui Xie, Xiaohe Zheng, Yuxin Liang, Yao Lu, Hankang Zhong, Feiyang Qian, Yuqing Zhu, Ruiting Sun, Yan Sheng, Jiaming Hu

Summary: This study reports a technology based on cationic lipid-polymer hybrid nanoparticles for efficient extracellular vesicle (EV) enrichment and in-situ detection of internal microRNAs. The technology demonstrates high EV enrichment efficiency and sensitive internal RNA detection, making it potentially useful for early pancreatic cancer diagnosis.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Facile synthesis of dual-ligand europium-metal organic gels for ratiometric electrochemiluminescence detecting I27L gene

Wenjie Dai, Gaoxu Chen, Xiaoyan Wang, Shujun Zhen, Chengzhi Huang, Lei Zhan, Yuanfang Li

Summary: In this study, a novel metal organic gel (MOG) with dual electrochemiluminescence (ECL) properties was prepared by simple mixing. The MOG exhibited strong and stable anodic and cathodic ECL signals. By utilizing this MOG, an ECL resonance energy transfer (ECL-RET) biosensor was constructed for ultrasensitive detection of a specific gene. The study developed a straightforward technique for obtaining a single luminescent material with dual signals and expanded the analytical application of MOGs in the realm of ECL.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives

Lais Canniatti Brazaca, Amanda Hikari Imamura, Rodrigo Vieira Blasques, Jessica Rocha Camargo, Bruno Campos Janegitz, Emanuel Carrilho

Summary: The use of microfluidic paper-based analytical devices (muPADs) for medical diagnosis is a growing trend due to their low cost, easy use, simple manufacturing, and potential for application in low-resource settings. This review focuses on the advances in muPADs for medical diagnostics, discussing their use in detecting various biomarkers in common human biofluids. The challenges of biomarker detection in each sample are examined, along with innovative techniques to overcome these limitations. The commercialization difficulties of muPADs are also considered, along with future trends such as wearable devices and integrated platforms.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Development of a peptide microarray-based metal-enhanced fluorescence assay for ultrasensitive detection of multiple matrix metalloproteinase activities by using a gold nanorod-polymer substrate

Minghong Jian, Xudong Sun, Hua Zhang, Xiaotong Li, Shasha Li, Zhenxin Wang

Summary: Matrix metalloproteinases (MMPs) are attractive biomarkers for cancer diagnosis and treatment, but their low abundance in biological samples, especially in the early stages of tumors, makes it challenging to precisely analyze MMP activities. In this study, a peptide microarray-based metal-enhanced fluorescence assay (PMMEFA) is proposed as a sensitive and specific method to simultaneously detect MMP-1, -2, -3, -7, -9, and -13 activities. The PMMEFA showed excellent sensitivity and was capable of detecting MMP activities in various matrices.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Plasmonic digital PCR for discriminative detection of SARS-CoV-2 variants

Kyung Ho Kim, Eunsu Ryu, Zinah Hilal Khaleel, Sung Eun Seo, Lina Kim, Yong Ho Kim, Hyun Gyu Park, Oh Seok Kwon

Summary: We have developed a novel strategy for discriminative detection of SARS-CoV-2 variants using the plasmonic photothermal effect of gold nanofilms and digital polymerase chain reaction (dPCR) technology. With this method, we were able to detect the delta and omicron variants with high sensitivity within 25 minutes from COVID-19 patients' clinical samples, making it a rapid and accurate point-of-care testing tool.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

A wearable and flexible lactic-acid/O2 biofuel cell with an enhanced air-breathing biocathode

Zepeng Kang, Yuanming Wang, Haiyan Song, Xueli Wang, Job Zhang, Zhiguang Zhu

Summary: By designing a wearable and flexible lactic-acid/O2 EBFC with an air-breathing biocathode, the limitations of biocathode are effectively solved. The optimal performance conditions are determined through experiments, and the EBFC is successfully applied to power a low-power device.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Gas-responsive two-dimensional metal-organic framework composites for trace visualization of volatile organic compounds

Huayun Chen, Zhiheng You, Yuhui Hong, Xiao Wang, Mingming Zhao, Yushi Luan, Yibin Ying, Yixian Wang

Summary: This study developed a colorimetric sensor array using gas-responsive two-dimensional metal-organic framework (MOF) composites for highly sensitive detection of volatile organic compounds (VOCs). The dye/Zn-2(bim)(4) composites-based sensor arrays showed enhanced sensitivity and anti-interference properties. The findings demonstrate the potential use of dye/Zn-2(bim)(4) sensor arrays for early perception of plant diseases.

BIOSENSORS & BIOELECTRONICS (2024)