4.8 Article

Greatly enhanced detection of a volatile ligand at femtomolar levels using bioluminescence resonance energy transfer (BRET)

期刊

BIOSENSORS & BIOELECTRONICS
卷 29, 期 1, 页码 119-124

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2011.08.004

关键词

GPCR; Olfactory receptors; ODR-10; Diacetyl; Renilla luciferase; BRET

向作者/读者索取更多资源

Our goal is to develop a general transduction system for G-protein coupled receptors (GPCRs). GPCRs are present in most eukaryote cells and transduce diverse extracellular signals. GPCRs comprise not only the largest class of integral membrane receptors but also the largest class of targets for therapeutic drugs. In all cases studied, binding of ligand to a GPCR leads to a sub-nanometer intramolecular rearrangement. Here, we report the creation of a novel chimaeric BRET-based biosensor by insertion of sequences encoding a bioluminescent donor and a fluorescent acceptor protein into the primary sequence of a GPCR. The BRET(2)-ODR-10 biosensor was expressed in membranes of Saccharomyces cerevisiae. Assays conducted on isolated membranes indicated an EC(50) in the femtomolar range for diacetyl. The response was ligand-specific and was abolished by a single point mutation in the receptor sequence. Novel BRET-GPCR biosensors of this type have potential application in many fields including explosive detection, quality control of food and beverage production, clinical diagnosis and drug discovery. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据