4.5 Article

Regulation of Ion Channel Function by the Host Lipid Bilayer Examined by a Stopped-Flow Spectrofluorometric Assay

期刊

BIOPHYSICAL JOURNAL
卷 106, 期 5, 页码 1070-1078

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2014.01.027

关键词

-

资金

  1. National Institutes of Health [GM021342, GM088352]

向作者/读者索取更多资源

To examine the function of ligand-gated ion channels in a defined membrane environment, we developed a robust sequential-mixing fluorescence-based stopped-flow assay. Channel activity is determined using a channel-permeable quencher (e.g., thallium, TI+) of a water-soluble fluorophore (8-aminonaphthalene-1,3,6-trisulfonic acid) encapsulated in large unilamellar vesicles in which the channel of interest has been reconstituted, which allows for rapid solution changes. To validate the method, we explored the activation of wild-type KcsA channel, as well as it's noninactivating (E71A) KcsA mutant, by extravesicular protons (H+). For both channel types, the day-to-day variability in the reconstitution yield (as judged from the time course of fluorescence quenching) is <10%. The activation curve for E71A KcsA is similar to that obtained previously using single-channel electrophysiology, and the activation curves for wild-type and E71A KcsA are indistinguishable, indicating that channel activation and inactivation are separate processes. We then investigated the regulation of KcsA activation by changes in lipid bilayer composition. Increasing the acyl chain length (from C-18:1 to C-22:1 in diacylphosphatidylcholine), but not the mole fraction of POPG (>0.25) in the bilayer-forming phospholipid mixture, alters KcsA H+ gating. The bilayer-thickness-dependent shift in the activation curve is suggestive of a decrease in an apparent H+ affinity and cooperativity. The control over bilayer environment and time resolution makes this method a powerful assay for exploring ligand activation and inactivation of ion channels, and how channel gating varies with changes in the channels' lipid bilayer environment or other regulatory processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据