4.5 Article

Built-In Mechanical Stress in Viral Shells

期刊

BIOPHYSICAL JOURNAL
卷 100, 期 4, 页码 1100-1108

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2011.01.008

关键词

-

资金

  1. Ministerio de Ciencia e Innovacion (MICINN) [MAT2008-02533, PIB2010US-00233, FIS2009-13403-C02]
  2. Comunidad Autonoma de Madrid (CAM) [P2009/MAT-1467]
  3. Generalitat of Catalonia
  4. European Social Fund
  5. CAM [P2009/MAT-1467, S2009/MAT-1507]
  6. Ministerio de Ciencia y Innovacion (MCI) [CSD2007-00010]
  7. MCI (MICINN) [2008-02328/BMC]
  8. Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology [171]
  9. [FIS2008-04386]

向作者/读者索取更多资源

Mechanical properties of biological molecular aggregates are essential to their function. A remarkable example are double-stranded DNA viruses such as the phi 29 bacteriophage, that not only has to withstand pressures of tens of atmospheres exerted by the confined DNA, but also uses this stored elastic energy during DNA translocation into the host. Here we show that empty prolated phi 29 bacteriophage proheads exhibit an intriguing anisotropic stiffness which behaves counterintuitively different from standard continuum elasticity predictions. By using atomic force microscopy, we find that the phi 29 shells are approximately two-times stiffer along the short than along the long axis. This result can be attributed to the existence of a residual stress, a hypothesis that we confirm by coarse-grained simulations. This built-in stress of the virus prohead could be a strategy to provide extra mechanical strength to withstand the DNA compaction during and after packing and a variety of extracellular conditions, such as osmotic shocks or dehydration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据