4.5 Article

Balanced Electrostatic and Structural Forces Guide the Large Conformational Change Associated with Maturation of T=4 Virus

期刊

BIOPHYSICAL JOURNAL
卷 98, 期 7, 页码 1337-1343

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2009.12.4283

关键词

-

资金

  1. National Institutes of Health [GM54076]
  2. United States National Institutes of Health, National Center for Research Resources [RR001209]
  3. Department of Energy Office of Biological and Environmental Research

向作者/读者索取更多资源

Nudaurelia capensis omega virus has a well-characterized T = 4 capsid that undergoes a pH-dependent large conformational changes (LCC) and associated auto-catalytic cleavage of the subunit. We examined previously the particle size at different pH values and showed that maturation occurred at pH 5.5. We now characterized the [CC with time-resolved small-angle x-ray scattering and showed that there were three kinetic stages initiated with an incremental drop in pH: 1), a rapid (<10 ms) collapse to an incrementally smaller particle; 2), a continuous size reduction over the next 5 s; and 3), a smaller final transition occurring in 2-3 min. Equilibrium measurements similar to those reported previously, but now more precise, showed that the particle dimension between pH 5.5 and 5 requires the autocatalytic cleavage to achieve its final compact size. A balance of electrostatic and structural forces shapes the energy landscape of the LCC with the latter requiring annealing of portions of the subunit. Equilibrium experiments showed that many intermediate states could be populated with a homogeneous ensemble of particles by carefully controlling the pH. A titration curve for the LCC was generated that showed that the virtual pK(a) (i.e., the composite of all titratable residues that contribute to the LCC) is 5.8.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据