4.5 Article

Long-Timescale Molecular-Dynamics Simulations of the Major Urinary Protein Provide Atomistic Interpretations of the Unusual Thermodynamics of Ligand Binding

期刊

BIOPHYSICAL JOURNAL
卷 99, 期 1, 页码 218-226

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2010.03.055

关键词

-

资金

  1. Office of Science and Technology through the Engineering and Physical Sciences Research Council [EP/G004455/1]
  2. Biotechnology and Biological Sciences Research Council [BBF0114071]
  3. Engineering and Physical Sciences Research Council [EP/G004455/1] Funding Source: researchfish
  4. EPSRC [EP/G004455/1] Funding Source: UKRI

向作者/读者索取更多资源

The mouse major urinary protein (MUP) has proved to be an intriguing test bed for detailed studies on protein-ligand recognition. NMR, calorimetric, and modeling investigations have revealed that the thermodynamics of ligand binding involve a complex interplay between competing enthalpic and entropic terms. We performed six independent, 1.2 mu s molecular-dynamics simulations on MUP-three replicates on the apo-protein, and three on the complex with the pheromone isobutylmethoxypyrazine. Our findings provide the most comprehensive picture to date of the structure and dynamics of MUP, and how they are modulated by ligand binding. The mechanical pathways by which amino acid side chains can transmit information regarding ligand binding to surface loops and either increase or decrease their flexibility (entropy-entropy compensation) are identified. Dewetting of the highly hydrophobic binding cavity is confirmed, and the results reveal an aspect of ligand binding that was not observed in earlier, shorter simulations: bound ligand retains extensive rotational freedom. Both of these features have significant implications for interpretations of the entropic component of binding. More generally, these simulations test the ability of current molecular simulation methods to produce a reliable and reproducible picture of protein dynamics on the microsecond timescale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据