4.5 Article

Synchronization of Circadian Oscillation of Phosphorylation Level of KaiC In Vitro

期刊

BIOPHYSICAL JOURNAL
卷 98, 期 11, 页码 2469-2477

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2010.02.036

关键词

-

资金

  1. Grants-in-Aid for Scientific Research [20244068] Funding Source: KAKEN

向作者/读者索取更多资源

In recent experimental reports, robust circadian oscillation of the phosphorylation level of KaiC has been reconstituted by incubating three cyanobacterial proteins, KaiA, KaiB, and KaiC, with ATP in vitro. This reconstitution indicates that protein-protein interactions and the associated ATP hydrolysis suffice to generate the oscillation, and suggests that the rhythm arising from this protein-based system is the circadian clock pacemaker in cyanobacteria. The mechanism of this reconstituted oscillation, however, remains elusive. In this study, we extend our previous model of oscillation by explicitly taking two phosphorylation sites of KaiC into account and we apply the extended model to the problem of synchrony of two oscillatory samples mixed at different phases. The agreement between the simulated and observed data suggests that the combined mechanism of the allosteric transition of KaiC hexamers and the monomer shuffling between them plays a key role in synchronization among KaiC hexamers and hence underlies the population-level oscillation of the ensemble of Kai proteins. The predicted synchronization patterns in mixtures of unequal amounts of two samples provide further opportunities to experimentally check the validity of the proposed mechanism. This mechanism of synchronization should be important in vivo for the persistent oscillation when Kai proteins are synthesized at random timing in cyanobacterial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据