4.5 Article

Nonlocal Helix Formation Is Key to Understanding S-Adenosylmethionine-1 Riboswitch Function

期刊

BIOPHYSICAL JOURNAL
卷 96, 期 2, 页码 L7-L9

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2008.10.033

关键词

-

资金

  1. National Science Foundation [PHY-0216576, 0225630, PHY-0822283]
  2. Los Alamos National Laboratory LDRD
  3. National Institutes of Health [R01-GM072686]

向作者/读者索取更多资源

Riboswitches are noncoding RNAs that regulate gene expression in response to changing concentrations of specific metabolites. Switching activity is affected by the interplay between the aptamer domain and expression platform of the riboswitch. The aptamer domain binds the metabolite, locking the riboswitch in a ligand-bound conformation. In absence of the metabolite, the expression platform forms an alternative secondary structure by sequestering the 3' end of a nonlocal helix called P1. We use all-atom structure-based simulations to characterize the folding, unfolding, and metabolite binding of the aptamer domain of the S-adenosylmethionine-1 (SAM-1) riboswitch. Our results suggest that folding of the nonlocal helix (P1) is rate-limiting in aptamer domain formation. Interestingly, SAM assists folding of the P1 helix by reducing the associated free energy barrier. Because the 3' end of the P1 helix is sequestered by an alternative helix in the absence of metabolites, this observed ligand-control of P1 formation provides a mechanistic explanation of expression platform regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据