4.5 Article

Paper pump for passive and programmable transport

期刊

BIOMICROFLUIDICS
卷 7, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4790819

关键词

bioMEMS; biotransport; capillarity; lab-on-a-chip; microchannel flow; micropumps

资金

  1. Air Force Office of Scientific Research
  2. Human Effectiveness Directorate, 711 Human Performance Wing, Air Force Research Laboratory

向作者/读者索取更多资源

In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 mu l/s to 1.7 mu l/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790819]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据