4.3 Article

Surface modifications based on the cyanobacterial siderophore anachelin: from structure to functional biomaterials design

期刊

BIOMETALS
卷 22, 期 4, 页码 595-604

出版社

SPRINGER
DOI: 10.1007/s10534-009-9234-3

关键词

Natural products; Siderophores; Surface chemistry; Biomaterials; Organic synthesis

资金

  1. SNF [PE002-117136/1, 200021-15918/1]

向作者/读者索取更多资源

This review describes the design, synthesis and evaluation of novel catechol based anchors for surface modification. The anachelin chromophore, the catecholate fragment of the siderophore anachelin from the cyanobacterium Anabaena cylindrica, allows for the immobilization of polyethylene glycol (PEG) on titania and glass surfaces thus rendering them protein resistant and antifouling. It is proposed that catecholate siderophores constitute a class of natural products useful for surface modification similar to dihydroxyphenylalanine and dopamine derived compounds found in mussel adhesive proteins. Second-generation dopamine derivatives featuring a quaternary ammonium group were found to be equally efficient in generating antifouling surfaces. The anachelin chromophore, merged via a PEG linker to the glycopeptide antibiotic vancomycin, allowed for the generation of antimicrobial surfaces through an operationally simple dip-and-rinse procedure. This approach offers an option for the prevention of nosocomial infections through antimicrobial implants, catheters and stents. Consequences for the mild generation of functional biomaterials are discussed and novel strategies for the immobilization of complex natural products, proteins and DNA on surfaces are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据