4.0 Article

The CRZ1/SP1-like gene links survival under limited aeration, cell integrity and biofilm formation in the pathogenic yeast Cryptococcus neoformans

期刊

BIOMEDICAL PAPERS-OLOMOUC
卷 158, 期 2, 页码 212-220

出版社

PALACKY UNIV, MEDICAL FAC
DOI: 10.5507/bp.2013.024

关键词

Cryptococcus; hypoxia; G2 arrest; CRZ1; SP1; cell integrity; capsule; biofilm; fluconazole; dormant infection

资金

  1. Czech Science Foundation [310/06/0645]
  2. Ministry of Education, Youth and Sports, Czech Republic [MSM6198959223]
  3. Grants-in-Aid for Scientific Research [24590518] Funding Source: KAKEN

向作者/读者索取更多资源

Aims. Limited aeration has been demonstrated to cause slowdown in proliferation and delayed budding, resulting eventually in a unique unbudded G2-arrest in the obligate aerobic pathogenic yeast Cryptococcus neoformans. Also, the ability to adapt to decreased oxygen levels during pathogenesis has been identified as a virulence factor in C. neoformans. The aim of this study was to identify and characterize genes that are necessary for the proliferation slowdown and G2-arrest caused by limited aeration. Methods. Random mutants were prepared and screened for lack of typical slowdown of proliferation under limited aeration. The CNAG_00156.2 gene coding for a zinc-finger transcription factor was identified in mutants showing most distinctive phenotype. Targeted deletion strain and reconstituted strain were prepared to characterize and confirm the gene functions. This gene was also identified in a parallel studies as homologous both to calcineurin responsive (Crz1) and PKC1-dependent (SP1-like) transcription factors. Results. We have confirmed the role of the cryptococcal homologue of CRZ1/SP1-like transcription factor in cell integrity, and newly demonstrated its role in slowdown of proliferation and survival under reduced aeration, in biofilm formation and in susceptibility to fluconazole. Conclusions. Our data demonstrate a tight molecular link between slowdown of proliferation during hypoxic adaptation and maintenance of cell integrity in C. neoformans and present a new role for the CRZ1 family of transcription factors in fungi. The exact positioning of this protein in cryptococcal signalling cascades remains to be clarified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据