4.8 Article

Mechanistic studies of methanol-to-hydrocarbons conversion on diffusion-free MFI samples

期刊

JOURNAL OF CATALYSIS
卷 329, 期 -, 页码 218-228

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2015.05.012

关键词

Methanol-to-hydrocarbons; Aromatics-based catalytic cycle; Olefins-based catalytic cycle; MFI; Diffusion free; Ethene selectivity; Low space velocity; High conversion

资金

  1. Dow Chemical Company
  2. National Science Foundation [CBET 1055846]
  3. Div Of Chem, Bioeng, Env, & Transp Sys
  4. Directorate For Engineering [1055846] Funding Source: National Science Foundation

向作者/读者索取更多资源

Self-pillared pentasil MFI (similar to 1 nm diffusion length) exhibited low ethene selectivity (1.1%) at <100% conversion for the catalytic reaction of dimethyl ether (DME) at 723 K and similar to 60 kPa DME pressure suggesting that the aromatics-based catalytic cycle is intrinsically suppressed in the pores of MFI under these reaction conditions. Co-feeding toluene or p-xylene with DME increased the number of chain carriers of the aromatics-based cycle, thereby enhancing its propagation and resulting in a 2-3-fold increase in ethene selectivity. Co-feeding propene or 1-hexene, however, did not have an effect on the product distribution, suggesting that the olefins-based hydrocarbon pool is saturated in the pores of MFI. At high temperature (723K) and low DME space velocity (<= 2.5 mol C [mol Al-s](-1)), conditions resulting in complete DME/methanol conversion, the catalyst bed comprises two stages: The first stage performs methanol-to-hydrocarbons chemistry in the presence of DME/methanol; the second stage begins after 100% DME conversion is achieved and is characterized by the absence of DME/methanol. The aromatics-based methylation/cracking cycle is absent in the second stage as methylbenzenes cannot dealkylate in the absence of DME/methanol, and the dominant pathway to ethene formation under these reaction conditions is olefin inter-conversion. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据