4.7 Article

A life cycle assessment of pennycress (Thlaspi aruense L.) -derived jet fuel and diesel

期刊

BIOMASS & BIOENERGY
卷 55, 期 -, 页码 87-100

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biombioe.2012.12.040

关键词

Field pennycress (Thlaspi arvense L.); biofuel; Renewable diesel; hydrotreated renewable jet; Life cycle assessment

向作者/读者索取更多资源

Field Pennycress (Thlaspi arvense L.) is a member of the mustard family and may be grown as a winter crop between traditional summer crops to produce renewable biomass for renewable diesel and jet fuel. This paper estimated total annual biofuel production potential of 15 million cubic metres from rotation between corn and soybeans on 16.2 million hectares in the Midwest without impact on food production. This study also investigated the life cycle greenhouse gas (GHG) emissions and energy balance of pennycress-derived Hydroprocessed Renewable Jet (HRJ) fuel and Renewable Diesel (RD). Both system expansion and allocation approaches were applied to distribute environmental impacts among products and coproducts along the life cycle of each biofuel. The life cycle GHG emissions (excluding land use change) for RD and HRJ range from 13 to 41 g MJ(-1) (CO2 eq.) and -18 to 45 g MJ(-1) (CO2 eq.), respectively, depending on how the co-products are credited. The majority of the energy required for each biofuel product is derived from renewable biomass as opposed to non renewable fossil. The fossil energy consumptions are considerably lower than the petroleum fuels. Scenario analyses were also conducted to determine response to model assumptions, including nitrogen fertilizer application rate, nitrogen content in crop residues, and sources of H-2. The results show that pennycress derived biofuels could qualify as advanced biofuels and as biomass-based diesel as defined by the Renewable Fuels Standard (RFS2). (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Agricultural Engineering

Gasification kinetics of chars from diverse residues under suitable conditions for the Sorption Enhanced Gasification process

G. Grasa, I. Martinez, R. Murillo

Summary: Gasification kinetics of six chars from residual origin were studied under relatively low temperature, low CO2, and high H2O partial pressures. The Random Pore Model (RPM) showed the best fit to experimental results, but the selection of the reaction model depended on the ash composition, specifically the presence of alkali and alkaline earth metals. Chars with ash content higher than 30% wt. were modeled with the RPM model, while chars with the highest K/Si ratio required modified versions of the RPM to accurately predict reaction rates. Textural properties played a key role in determining reaction parameters, such as the pre-exponential factor and activation energy, for chars with similar ash content and composition.

BIOMASS & BIOENERGY (2024)

Review Agricultural Engineering

A review on emerging technologies and machine learning approaches for sustainable production of biofuel from biomass waste

V. Godvin Sharmila, Surya Prakash Shanmugavel, J. Rajesh Banu

Summary: Proper treatment and disposal of biomass waste is crucial to prevent environmental deposition and its negative impacts. Biofuel has emerged as a potential alternative to fossil fuels, reducing carbon emissions and meeting global energy demands. This review examines different biomass waste conversion techniques and explores the production of biofuels with zero carbon emissions. Research on anaerobic treatment, metabolic engineering, and artificial intelligence has been conducted to enhance biofuel production efficiency.

BIOMASS & BIOENERGY (2024)

Review Agricultural Engineering

Influencing factors and environmental feasibility analysis of agricultural waste preprocessing routes towards biofuel production - A review

Selvakumar Periyasamy, Adane Asefa Adego, P. Senthil Kumar, G. G. Desta, T. Zelalem, V. Karthik, J. Beula Isabel, Mani Jayakumar, Venkatesa Prabhu Sundramurthy, Gayathri Rangasamy

Summary: Valorizing agricultural waste into valuable products is crucial for environmental protection and bioeconomy advancement. Preprocessing of agricultural waste is a critical step to convert free carbohydrate molecules for final conversion, and factors such as biomass nature, feed loading, pH, temperature, and time influence the process. This review provides comprehensive information on agricultural waste availability, preprocessing techniques, and factors influencing performance.

BIOMASS & BIOENERGY (2024)

Article Agricultural Engineering

A comprehensive machine learning-coupled response surface methodology approach for predictive modeling and optimization of biogas potential in anaerobic Co-digestion of organic waste

Aqueel Ahmad, Ashok Kumar Yadav, Achhaibar Singh, Dinesh Kumar Singh

Summary: The study focuses on predicting and optimizing the yield of biogas production in an anaerobic digester using co-digestion. Experimental data was used to develop a machine learning-based prognostic model, and the Response Surface Methodology (RSM) was employed to optimize the parameters. The results demonstrate that RSM coupled with machine learning is an effective technique for modeling, predicting, and optimizing biogas production yield.

BIOMASS & BIOENERGY (2024)

Article Agricultural Engineering

Unraveling the thermal decomposition and conversion mechanisms of silica aerogel-infused cork cells

Yijing Zhong, Wenxiang Zhai, Xinli Wei

Summary: This paper studies the thermal stability and decomposition of cork materials with and without silica aerogel filler. The results show that the decomposition is inhibited and the pyrolysis is significantly reduced with the addition of silica aerogel. This finding suggests that silica aerogel-infused cork may be a promising raw material for biofuel production with reduced environmental pollution.

BIOMASS & BIOENERGY (2024)