4.7 Article

Galactose-Based Amphiphilic Block Copolymers: Synthesis, Micellization, and Bioapplication

期刊

BIOMACROMOLECULES
卷 14, 期 5, 页码 1444-1451

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm4003078

关键词

-

资金

  1. National Natural Science Foundation of China [20974103, 21074121, 21090354]

向作者/读者索取更多资源

Redox-responsive amphiphilic diblock copolymers, poly(6-O-methacryloyl-D-galactopyranose-co-2-(N,N-dimethylaminoethyl) methacrylate)-b-poly(pyridyl disulfide ethyl methylacrylate) (P(MAGP-co-DMAEMA)-b-PPDSMA) were obtained by deprotection of poly((6-O-methacryloyl-1,2:3,4-di-O-isopropylidene-D-galactopyranose)-co-DMAE-MA)-b-PPDSMA [P(MAlpGP-co-DMAEMA)-b-PPDSMA], which were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of PDSMA using P(MAlpGP-co-DMAEMA) as macro-RAFT agent. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies showed that diblock copolymers P(MAGP-co-DMAEMA)-b-PPDSMA can self-assemble into micelles. Doxorubicin (DOX) could be encapsulated by P(MAGP-co-DMAEMA)-b-PPDSMA upon micellization and released upon adding glutathione (GSH) into the micelle solution. The galactose functional groups in the PMAGP block had specific interaction with HepG2 cells, and P(MAGP-co-DMAEMA)-b-PPDSMA can act as gene delivery vehicle. So, this kind of polymer has potential applications in hepatoma-targeting drug and gene delivery and biodetection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据