4.7 Article

Molecular Dynamics Unlocks Atomic Level Self-Assembly of the Exopolysaccharide Matrix of Water-Treatment Granular Biofilms

期刊

BIOMACROMOLECULES
卷 13, 期 6, 页码 1965-1972

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm3005808

关键词

-

资金

  1. University of Queensland
  2. Environmental Biotechnology Cooperative Research Council (EBCRC) Pty Ltd, Australia

向作者/读者索取更多资源

Biofilm formation, in which bacteria are embedded within an extracellular matrix, is the default form of microbial life in most natural and engineered habitats. In this work, atomistic molecular dynamics simulations were employed to examine the self-assembly of the polysaccharide Granulan to provide insight into the molecular interactions that lead to biofilm formation. Granulan is a major gel forming matrix component of granular microbial biofilms found in used-water treatment systems. Molecular dynamics simulations showed that Granulan forms an antiparallel double helix stabilized by complementary hydrogen bonds between the beta-glucosamine of one strand and the N-acetyl-beta-galactosamine-2-acetoamido-2-deoxy-alpha-galactopyranuronic pair of the other in both the presence and absence of Ca2+. It is shown that Ca2+ binds primarily to the carboxyl group of the terminal hexuronic acid of the sugar branch and that interactions between branches mediated by Ca2+ suggest a possible mechanism for strengthening gels by facilitating interhelical bridging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据