4.5 Article

Identification of Label-Retaining Perivascular Cells in a Mouse Model of Endometrial Decidualization, Breakdown, and Repair

期刊

BIOLOGY OF REPRODUCTION
卷 86, 期 6, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.112.099309

关键词

blood vessels; endometrium; label-retaining cells; menstruation; progenitor cells; stromal cells

资金

  1. National Health and Medical Research Council of Australia [490995, 465121, 545992]
  2. Royal Australian and New Zealand College of Obstetricians and Gynaecologists
  3. Monash University
  4. Victorian Government

向作者/读者索取更多资源

The human endometrium is incredibly dynamic, undergoing monthly cycles of growth and regression during a woman's reproductive life. Endometrial repair at the cessation of menstruation is critical for reestablishment of a functional endometrium receptive for embryo implantation; however, little is understood about the mechanisms behind this rapid and highly efficient process. This study utilized a functional mouse model of endometrial breakdown and repair to assess changes in endometrial vasculature that accompany these dynamic processes. Given that adult endometrial stem/progenitor cells identified in human and mouse endometrium are likely contributors to the remarkable regenerative capacity of endometrium, we also assessed label-retaining cells (LRC) as candidate stromal stem/progenitor cells and examined their relationship with endometrial vasculature. Newborn mouse pups were pulse-labeled with bromodeoxyuridine (BrdU) and chased for 5 wk before decidualization, endometrial breakdown, and repair were induced by hormonal manipulation. Mean vessel density did not change significantly throughout breakdown and repair; however, significantly elevated endothelial cell proliferation was observed in decidual tissue. Stromal LRC were identified throughout breakdown and repair, with significantly fewer observed during endometrial repair than before decidualization. A significantly higher percentage of LRC were associated with vasculature during repair than before decidualization, and a proportion were undergoing proliferation, indicative of their functional capacity. This study is the first to examine the endometrial vasculature and candidate stromal stem/progenitor cells in a functional mouse model of endometrial breakdown and repair and provides functional evidence suggesting that perivascular LRC may contribute to endometrial stromal expansion during the extensive remodeling associated with this process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据