4.6 Article

Mammalian Argonaute-DNA binding?

期刊

BIOLOGY DIRECT
卷 9, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s13062-014-0027-4

关键词

Consensus; Hypothesis assessment; Scientific discovery; DNA interference; Cytoplasmic DNA; RNA interference

类别

资金

  1. CAPES Foundation, Ministry of Education of Brazil [99999.016816/2012-09]
  2. NIH [P01-AG039347]

向作者/读者索取更多资源

When a field shares the consensus that a particular phenomenon does NOT occur, this may reflect extensive experimental investigations with negative outcomes, or may represent the common sense position based on current knowledge and established ways of thinking. The current consensus of the RNA field is that eukaryotic Argonaute (Ago) proteins employ RNA guides and target other RNAs. The alternative - that eukaryotic Ago has biologically important interactions with DNA in vivo - has not been seriously considered, in part because the only role contemplated for DNA was as a guide strand, and in part because it did not seem plausible that any natural source of suitable DNAs exists in eukaryotic cells. However, eukaryotic Argonaute domains bind DNA in the test tube, and several articles report that small inhibitory double-stranded DNAs do have the ability to silence target RNAs in a sequence-dependent (though poorly characterized) manner. A search of the literature identified potential DNA binding partners for Ago, including (among others) single-stranded DNAs residing in extracellular vesicles, and cytoplasmic satellite-repeat DNA fragments that are associated with the plasma membrane and transcribed by Pol II. It is interesting to note that both cytoplasmic and extracellular vesicle DNA are expressed at greatly elevated levels in cancer cells relative to normal cells. In such a pathological scenario, if not under normal conditions, there may be appreciable binding of Ago to DNA despite its lower affinity compared to RNA. If so, DNA might displace Ago from binding to its normal partners (miRNAs, siRNAs and other short ncRNAs), disrupting tightly controlled post-transcriptional gene silencing processes that are vital to correct functioning of a normal cell. The possible contribution to cancer pathogenesis is a strong motivator for further investigation of Ago-DNA binding. More generally, this case underscores the need for better informatics tools to allow investigators to analyze the state of a given scientific question at a high-level and to identify possible new research directions. Reviewers: This article was reviewed by Eugene Koonin, Kira S. Makarova, Alexander Maxwell Burroughs (nominated by L Aravind), and Isidore Rigoutsos. Open peer review: Reviewed by Eugene Koonin, Kira S. Makarova, Alexander Maxwell Burroughs (nominated by L Aravind), and Isidore Rigoutsos. For the full reviews, please go to the Reviewers' comments section.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据