4.7 Article

The Electroretinogram as a Biomarker of Central Dopamine and Serotonin: Potential Relevance to Psychiatric Disorders

期刊

BIOLOGICAL PSYCHIATRY
卷 75, 期 6, 页码 479-486

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.biopsych.2012.11.024

关键词

Biomarker; dopamine; dopamine transporter; electroretinogram; psychiatric disorders; serotonin

资金

  1. Canadian Institute of Health Research [NSA 93798, MOP 82707]
  2. Fonds de recherche du Quebec - Sante
  3. Centre de recherche sur le cerveau, le comportement et la neuropsychiatrie

向作者/读者索取更多资源

Background: Dysfunctions in brain dopamine and serotonin neurotransmission are believed to be involved in the etiology of psychiatric disorders, and electroretinogram (ERG) anomalies have been reported in psychiatric patients. The goal of this study was to evaluate whether ERG anomalies could result from central dopamine or serotonin dysfunctions or from changes in the retinal bioavailability of these neurotransmitters. Method: Photopic and scotopic ERGs were recorded in R439H tryptophan hydroxylase 2 knockin (Tph2-KI) mice that have an approximately 80% decrease in brain serotonin and dopamine transporter knockout (DAT-KO) mice showing a fivefold increase in brain extracellular dopamine. Dopamine and serotonin retinal and striatal tissue content were also measured. The role of dopamine D1 receptors (D1R) and D2 receptors (D2R) in the ERG responses was evaluated in D1R-KO and D2R-KO mice. Results: An increase in photopic b-wave implicit time was observed in Tph2-KI mice (wildtype = 24.25 msec, KI = 25.22 msec; p = .011). The DAT-KO mice showed a decrease in rod sensitivity (wildtype = -1.97 log units, KO = -1.81 log units; p = .014). In contrast to remarkable alterations in brain levels, no changes in dopamine and serotonin retinal content were found in DAT-KO and Tph2-KI mice, respectively. The D1R-KO mice showed anomalies in photopic and scotopic maximal amplitude, whereas D2R-KO mice showed higher oscillatory potentials relative contribution to the b-wave amplitude. Conclusion: Alterations in central dopamine and serotonin neurotransmission can affect the ERG responses. The ERG anomalies reported in psychiatric disorders might serve as biomarkers of central monoaminergic dysfunction, thus promoting ERG measurements as a useful tool in psychiatric research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据