4.3 Review

Protein-specific glycosylation: signal patches and cis-controlling peptidic elements

期刊

BIOLOGICAL CHEMISTRY
卷 390, 期 7, 页码 619-626

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/BC.2009.043

关键词

Fringe; LacdiNAc; mannose-6-phosphate; O-mannosylation; polysialylation

向作者/读者索取更多资源

The term 'protein-specific glycosylation' refers to important functional implications of a subset of glycosylation types that are under direct control of recognition determinants on the protein. Examples of the latter are found in the formation of the mannose-6-phosphate receptor ligand on lysosomal hydrolases, and in polysialylation of NCAM, which are regulated via conformational signal patches on the protein. Distinct from these examples, the beta 4-GaINAc modification of N-linked glycans on a selected panel of proteins, such as carbonic anhydrase or glycodelin, was demonstrated recently to require specific protein (sequence) determinants proximal to the glycosylation site that function as cis-regulatory elements. Another example of such a cis-regulatory element was described for the control of mammalian O-mannosylation. In this case, the structural features of substrate sites within the mucin domain of a-dystroglycan are necessary, but not sufficient for determining the transfer of mannose to Ser/Thr. Evidence has been provided that an upstream-located peptide is also essential. Such cis-controlling elements provide a higher level of protein specificity, because a putative glycosylation site cannot result from a single point mutation. Here, we highlight recent work on protein-specific glycosylation with particular emphasis on the above-cited examples and we will try to link protein-specific glycosylation to function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据