4.3 Article

Repression of the Promoter Activity Mediated by Liver Receptor Homolog-1 through Interaction with Ku Proteins

期刊

BIOLOGICAL & PHARMACEUTICAL BULLETIN
卷 33, 期 5, 页码 784-791

出版社

PHARMACEUTICAL SOC JAPAN
DOI: 10.1248/bpb.33.784

关键词

liver receptor homolog-1; Ku protein; small heterodimer partner; peroxisome proliferator-activated receptor gamma coactivator-1 alpha; nuclear receptor; corepressor

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan
  2. Japan Society for the Promotion of Science (JSPS)

向作者/读者索取更多资源

Nuclear receptor liver receptor homolog-1 (LRH-1; NR5A2) plays a crucial role in the homeostasis of bile acids and cholesterol by controlling the expression of genes central to bile acid synthesis and efflux, reverse cholesterol transport, and high density lipoprotein-remodeling. However, the molecular mechanisms that modulate the transactivation activity of LRH-1 remain unclear. It is proposed that LRH-1's activity is regulated by post-modifications, the binding of small heterodimer partner (SHP), or the binding of coregulators. To search for co-factors that regulate the transactivation activity of LRH-1, we performed a pull-down assay using glutathione S-transferase (GST) fused to the N-terminal portion of LRH-1 and nuclear extracts from HeLa cells, and identified Ku proteins as interacting proteins with LRH-1. We also found that Ku proteins associate with LRH-1 through its DNA-binding domain and hinge region. Luciferase reporter assays revealed that Ku proteins repressed the SHP promoter activity mediated by LRH-1. Furthermore, Ku proteins suppressed the coactivating effect of peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 alpha (PGC-1 alpha), an LRH-1 coactivator, on the LRH-1-mediated SHP promoter activity. Previously, we showed that Ku proteins interacted with nuclear receptor farnesoid X receptor (FXR; NR1H4) and decreased the expression of its target gene. In this study, we demonstrated that Ku proteins also interacted with not only LRH-1 but various nuclear receptors, such as the estrogen receptor, PPAR, and Rev-erb. Ku proteins may function as corepressors for various nuclear receptors including LRH-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据