4.7 Article

Fast thermodynamically constrained flux variability analysis

期刊

BIOINFORMATICS
卷 29, 期 7, 页码 903-909

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btt059

关键词

-

资金

  1. Berlin Mathematical School

向作者/读者索取更多资源

Motivation: Flux variability analysis (FVA) is an important tool to further analyse the results obtained by flux balance analysis (FBA) on genome-scale metabolic networks. For many constraint-based models, FVA identifies unboundedness of the optimal flux space. This reveals that optimal flux solutions with net flux through internal biochemical loops are feasible, which violates the second law of thermodynamics. Such unbounded fluxes may be eliminated by extending FVA with thermodynamic constraints. Results: We present a new algorithm for efficient flux variability (and flux balance) analysis with thermodynamic constraints, suitable for analysing genome-scale metabolic networks. We first show that FBA with thermodynamic constraints is NP-hard. Then we derive a theoretical tractability result, which can be applied to metabolic networks in practice. We use this result to develop a new constraint programming algorithm for fast FVA with thermodynamic constraints (tFVA). Computational comparisons with previous methods demonstrate the efficiency of the new method. For tFVA, a speed-up of factor 30-300 is achieved. In an analysis of genome-scale metabolic networks in the database, we found that in 485 of 716 networks, additional irreversible or fixed reactions could be detected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据