4.7 Article

High-throughput prediction of protein antigenicity using protein microarray data

期刊

BIOINFORMATICS
卷 26, 期 23, 页码 2936-2943

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btq551

关键词

-

资金

  1. NIH [LM-07443-01, U01AI078213, U54AI065359]
  2. NSF MRI [EIA-0321390]
  3. NSF [0513376]
  4. Microsoft Faculty Research Award

向作者/读者索取更多资源

Motivation: Discovery of novel protective antigens is fundamental to the development of vaccines for existing and emerging pathogens. Most computational methods for predicting protein antigenicity rely directly on homology with previously characterized protective antigens; however, homology-based methods will fail to discover truly novel protective antigens. Thus, there is a significant need for homology-free methods capable of screening entire proteomes for the antigens most likely to generate a protective humoral immune response. Results: Here we begin by curating two types of positive data: (i) antigens that elicit a strong antibody response in protected individuals but not in unprotected individuals, using human immunoglobulin reactivity data obtained from protein microarray analyses; and (ii) known protective antigens from the literature. The resulting datasets are used to train a sequence-based prediction model, ANTIGENpro, to predict the likelihood that a protein is a protective antigen. ANTIGENpro correctly classifies 82% of the known protective antigens when trained using only the protein microarray datasets. The accuracy on the combined dataset is estimated at 76% by cross-validation experiments. Finally, ANTIGENpro performs well when evaluated on an external pathogen proteome for which protein microarray data were obtained after the initial development of ANTIGENpro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据