4.7 Article

Simulation of large-scale rule-based models

期刊

BIOINFORMATICS
卷 25, 期 7, 页码 910-917

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btp066

关键词

-

资金

  1. National Institutes of Health [AI35997, CA109552, GM076570, RR18754]
  2. Department of Energy (DOE) [DE-AC52-06NA25396]
  3. Arizona Biomedical Research Commission

向作者/读者索取更多资源

Motivation: Interactions of molecules, such as signaling proteins, with multiple binding sites andor multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. Results: DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling proteinprotein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of StochSim. DYNSTOC differs from StochSim by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据