4.7 Article

Robustified MANOVA with applications in detecting differentially expressed genes from oligonucleotide arrays

向作者/读者索取更多资源

Motivation: Oligonucleotide arrays such as Affymetrix GeneChips use multiple probes, or a probe set, to measure the abundance of mRNA of every gene of interest. Some analysis methods attempt to summarize the multiple observations into one single score before conducting further analysis such as detecting differentially expressed genes (DEG), clustering and classification. However, there is a risk of losing a significant amount of information and consequently reaching inaccurate or even incorrect conclusions during this data reduction. Results: We developed a novel statistical method called robustified multivariate analysis of variance (MANOVA) based on the traditional MANOVA model and permutation test to detect DEG for both one-way and two-way cases. It can be extended to detect some special patterns of gene expression through profile analysis across k (>= 2) populations. The method utilizes probe-level data and requires no assumptions about the distribution of the dataset. We also propose a method of estimating the null distribution using quantile normalization in contrast to the pooling method (Section 3.1). Monte Carlo simulation and real data analysis are conducted to demonstrate the performance of the proposed method comparing with the pooling method and the usual Analysis of Variance (ANOVA) test based on the summarized scores. It is found that the new method successfully detects DEG under desired false discovery rate and is more powerful than the competing method especially when the number of groups is small.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据