4.5 Article

Are there three polynucleotide strands in the catalytic centre of DNA polymerases?

期刊

BIOCHIMIE
卷 91, 期 11-12, 页码 1523-1530

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biochi.2009.07.008

关键词

DNA polymerases; Triple helix; Recombination; Catalysis; Primer

资金

  1. Institut National de la Sante et de la Recherche Medicale (INSERM)

向作者/读者索取更多资源

Mitochondrial DNA may undergo large-scale rearrangements, thus leading to diseases. The mechanisms of these rearrangements are still the matter of debates. Several lines of evidence indicate that breakpoints are characterized by direct repeats (DR), one of them being eliminated from the normal genome. Analysis of DR showed their skewed nucleotide content compatible with the formation of known triple helices. Here, I propose a novel mechanism involving the formation of triplex structures that result from the dissociation of the [synthesized repeat-DNA polymerase] complex. Upon binding to the homologous sequence, replication is initiated from the primer bound in a triple helix manner. This feature implies the initiation of replication on the double-stranded DNA from the triple helix primer. Hereby, I review evidences supporting this model. Indeed, all short d(G)-rich primers 10 nucleotides long can be elongated on double-stranded DNA by phage, bacterial, reverse transcriptases and eukaryotic DNA polymerases. Mismatches may be tolerated between the primer and its double-stranded binding site. In contrast to previous studies, evidences for the parallel binding of the triple helix to its homologous strand are provided. This suggest the displacement of the non-template strand by the triple helix primer upon binding within the DNA polymerase catalytic centre. Computer modelling indicates that the triple helix primer lies within the major groove of the double helix, with its 3' hydroxyl end nearby the catalytic amino acids. Taken together, I bring new concepts on DNA rearrangements, and novel features of triple helices and DNA polymerases that can bind three polynucleotide strands similar to RNA polymerases. (C) 2009 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据