4.3 Article

Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags

期刊

JOURNAL OF BIOMOLECULAR NMR
卷 64, 期 1, 页码 39-51

出版社

SPRINGER
DOI: 10.1007/s10858-015-0003-z

关键词

Double electron-electron resonance; E. coli aspartate/glutamate binding protein; Integrative structural biology; Lanthanide tag; Pseudocontact shift

资金

  1. Australian Research Council (ARC)
  2. Australia-Weizmann Making Connections grant
  3. ARC

向作者/读者索取更多资源

Pseudocontact shifts (PCS) induced by tags loaded with paramagnetic lanthanide ions provide powerful long-range structure information, provided the location of the metal ion relative to the target protein is known. Usually, the metal position is determined by fitting the magnetic susceptibility anisotropy (Delta chi) tensor to the 3D structure of the protein in an 8-parameter fit, which requires a large set of PCSs to be reliable. In an alternative approach, we used multiple Gd3+-Gd3+ distances measured by double electron-electron resonance (DEER) experiments to define the metal position, allowing Delta chi-tensor determinations from more robust 5-parameter fits that can be performed with a relatively sparse set of PCSs. Using this approach with the 32 kDa E. coli aspartate/glutamate binding protein (DEBP), we demonstrate a structural transition between substratebound and substrate-free DEBP, supported by PCSs generated by C3-Tm3+ and C3-Tb3+ tags attached to a genetically encoded p-azidophenylalanine residue. The significance of small PCSs was magnified by considering the difference between the chemical shifts measured with Tb3+ and Tm3+ rather than involving a diamagnetic reference. The integrative sparse data approach developed in this work makes poorly soluble proteins of limited stability amenable to structural studies in solution, without having to rely on cysteine mutations for tag attachment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据