4.5 Article

A designed angiopoietin-2 variant, pentameric COMP-Ang2, strongly activates Tie2 receptor and stimulates angiogenesis

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamcr.2009.01.018

关键词

Angiopoietin-2; Oligomerization; Tie2; COMP-Ang1; COMP-Ang2

资金

  1. Korea Research Foundation [R02-2004-000-10120-0]
  2. KOSEF [2004-02376]
  3. National Research Foundation of Korea [2004-02376] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Despite that angiopoietin-2 (Ang2) produces more versatile and dynamic functions than angiopoietin-1 (Ang1) in angiogenesis and inflammation, the molecular mechanism that underlies this difference is still unknown. To define the role of oligomerization of Ang2 in activation of its receptor, Tie2, we designed and generated different oligomeric forms of Ang2 by replacement of the amino-terminal domains of Ang2 with dimeric, tetrameric, and pentameric short coiled-coil domains derived from GCN4, matrillin-1, and COMP. COMP-Ang2 strongly binds and activates Tie2, whereas GCN4-Ang2 and MAT-Ang2 weakly to moderately bind and activate Tie2. Although native Ang2 strongly binds to Tie2, it does not activate Tie2. Accordingly, COMP-Ang2 strongly promotes endothelial cell survival, migration, and tube formation in a Tie2-dependent manner, and the potency of COMP-Ang2 is almost identical to that of COMP-Ang1. Furthermore, the potency of COMP-Ang2-induced enhanced angiogenesis in the wound healing region is almost identical to the potency of COMP-Ang1-induced enhanced angiogenesis. Overall, there is no obvious difference between COMP-Ang2 and COMP-Ang1 in in vitro and in vivo angiogenesis. Our results provide compelling evidence that proper oligomerization of Ang2 is a critical determinant of its binding and activation of Tie2. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据