4.5 Review

Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbagrm.2013.02.006

关键词

DExD/H-box protein; RNA helicase; RNPase; Splicing; Proofreading; Discard pathway

资金

  1. Taiwan's National Science Council [97-2311-B-001-014-MY3, 98-2311-565-B-001-015-MY3, 101-2311-B-001-005]
  2. Academia Sinica's Thematic Project [AS-99-TP-B20]
  3. Genomics Research Center
  4. Academia Sinica

向作者/读者索取更多资源

In eukaryotes, many genes are transcribed as precursor messenger RNAs (pre-mRNAs) that contain exons and introns, the latter of which must be removed and exons ligated to form the mature mRNAs. This process is called pre-mRNA splicing, which occurs in the nucleus. Although the chemistry of pre-mRNA splicing is identical to that of the self-splicing Group II introns, hundreds of proteins and five small nuclear RNAs (snRNAs), U1, U2, U4, U5, and U6, are essential for executing pre-mRNA splicing. Spliceosome, arguably the most complex cellular machine made up of all those proteins and snRNAs, is responsible for carrying out pre-mRNA splicing. In contrast to the transcription and the translation machineries, spliceosome is formed anew onto each pre-mRNA and undergoes a series of highly coordinated reconfigurations to form the catalytic center. This amazing process is orchestrated by a number of DExD/H-proteins that are the focus of this article, which aims to review the field in general and to project the exciting challenges and opportunities ahead. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biochemistry & Molecular Biology

A poly-histidine motif of HOXA1 is involved in regulatory interactions with cysteine-rich proteins

Damien Marchese, Florent Guislain, Tamara Pringels, Laure Bridoux

Summary: Homopolymeric amino acid repeats are common in human proteins, particularly in transcription factors and kinases. This study focuses on homopolymeric histidine repeats (polyH) and their role in regulating embryonic development. Through bioinformatic analysis, the study identifies that polyH-containing proteins interact with cysteine-rich proteins and proteins containing cysteine repeats. The study further investigates the HOXA1 protein, a transcription factor with a long polyH motif, and finds that the polyH motif is necessary for its interaction with cysteine-rich proteins. Additionally, the study discovers that metal ions are required for the HOXA1-MDFI interaction and identifies three polyH interactors that down-regulate the transcriptional activity of HOXA1.

BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS (2024)