4.5 Article

Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic?

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1827, 期 7, 页码 826-833

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbabio.2013.04.005

关键词

Nitric oxide reductase; Cytochrome c oxidase; Density functional theory; Electrogenicity; Proton pumping

向作者/读者索取更多资源

The membrane-bound enzyme cNOR (cytochrome c dependent nitric oxide reductase) catalyzes the reduction of NO in a non-electrogenic process. This is in contrast to the reduction of O-2 in cytochrome c oxidase (CcO), the other member of the heme-copper oxidase family, which stores energy by the generation of a membrane gradient. This difference between the two enzymes has not been understood, but it has been speculated to be of kinetic origin, since per electron the NO reduction is more exergonic than the O-2 reduction, and the energy should thus be enough for an electrogenic process. However, it has not been clear how and why electrogenicity, which mainly affects the thermodynamics, would slow down the very exergonic NO reduction. Quantum chemical calculations are used to construct a free energy profile for the catalytic reduction of NO in the active site of cNOR. The energy profile shows that the reduction of the NO molecules by the enzyme and the formation of N2O are very exergonic steps, making the rereduction of the enzyme endergonic and rate-limiting for the entire catalytic cycle. Therefore the NO reduction cannot be electrogenic, i.e. cannot take electrons and protons from the opposite sides of the membrane, since it would increase the endergonicity of the rereduction when the gradient is present, thereby increasing the rate-limiting barrier, and the reaction would become too slow. It also means that proton pumping coupled to electron transfer is not possible in cNOR In CcO the corresponding rereduction of the enzyme is very exergonic. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biochemistry & Molecular Biology

Conformational changes in a Photosystem II hydrogen bond network stabilize the oxygen-evolving complex

Brandon P. Russell, David J. Vinyard

Summary: The Mn4CaO5 oxygen-evolving complex in Photosystem II is crucial for water oxidation. D1 residue R334 participates in proton release and interacts with PsbO. A D1-R334G mutant destabilizes the OEC but stabilizes the S2 intermediate.

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS (2024)

Article Biochemistry & Molecular Biology

Oscillations of chlorophyll fluorescence after plasma membrane excitation in Chara originate from nonuniform composition of signaling metabolites in the streaming cytoplasm

Alexander A. Bulychev, Tatiana S. Strelets

Summary: Excitable cells of higher plants and characean algae respond to stressful stimuli by generating action potentials that influence chlorophyll fluorescence and photosynthesis for an extended period of time. While plant leaves exhibit a reversible depression in the efficiency of photosystem II reaction after an individual action potential, characean algae show long-lasting oscillations of photosystem II reaction efficiency after firing an action potential. This study investigates the possible mechanisms behind these oscillations and suggests that they are a result of metabolic rearrangements in chloroplasts and the cyclosis cessation-recovery cycle induced by calcium influx during action potentials. The findings also indicate that fluidic communications between different cell regions play a role in these oscillations, and the inhibition of oscillations occurs when these communications are restricted or eliminated.

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS (2024)

Article Biochemistry & Molecular Biology

Anti-stokes fluorescence of phycobilisome and its complex with the orange carotenoid protein

Dmitry Zlenko, Elena A. Protasova, Georgy Tsoraev, Nikolai N. Sluchanko, Dmitry A. Cherepanov, Thomas Friedrich, Baosheng Ge, Song Qin, Eugene G. Maksimov, Andrew B. Rubin

Summary: The conformation of chromophores in isolated phycobiliproteins is heterogeneous, but not in the entire phycobilisome (PBS). Under low-energy excitation, there is no significant uphill energy transfer from the core to the peripheral rods of the PBS, while transfer from the terminal emitters to bulk allophycocyanin chromophores is highly probable.

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS (2024)

Article Biochemistry & Molecular Biology

Spillover in the direct-type PSI-PSII megacomplex isolated from Arabidopsis thaliana is regulated by pH

Makio Yokono, Chiyo Noda, Jun Minagawa

Summary: This paper investigates the energy transfer between Photosystem II and Photosystem I in Arabidopsis thaliana, and finds that the fast spillover is reversibly regulated depending on pH.

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS (2024)