4.5 Article

NPQ activation reduces chlorophyll triplet state formation in the moss Physcomitrella patens

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1817, 期 9, 页码 1608-1615

出版社

ELSEVIER
DOI: 10.1016/j.bbabio.2012.05.007

关键词

NPQ; Triplets; LHC; Carotenoid; FDMR; Physcomitrella patens

资金

  1. Italian Ministry for University and Research (MURST)
  2. University of Padova [CPDA089403, CPDR104834]

向作者/读者索取更多资源

Plants live in variable environments in which light intensity can rapidly change, from limiting to excess conditions. Non-photochemical quenching (NPQ) is a regulatory mechanism which protects plants from oxidative stress by dissipating excess Chl singlet excitation. In this work, the physiological role of NPQ was assessed by monitoring its influence on the population of the direct source of light excess damage, i.e., Chl triplets ((3)Chl*). (3)Chl* formation was evaluated in vivo, with the moss Physcomitrella patens, by exploiting the high sensitivity of fluorescence-detected magnetic resonance (FDMR). A dark adapted sample was compared with a pre-illuminated sample in which NPQ was activated, the latter showing a strong reduction in (3)Chl* yield. In line with this result, mutants unable to activate NPQ showed only a minor effect in (3)Chl* yield upon pre-illumination. The decrease in (3)Chl* yield is equally experienced by all the Chl pools associated with PSII, suggesting that NPQ is effective in protecting both the core and the peripheral antenna complexes. Moreover, the FDMR results show that the structural reorganization in the photosynthetic apparatus, required by NPQ does not lead to the formation of new (3)Chl* traps in the LHCs. This work demonstrates that NPQ activation leads to effective photoprotection, promoting a photosystem II state characterized by a reduced probability of (3)Chl* formation, due to a decreased singlet excited state population, while maintaining an efficient quenching of the (3)chl* eventually formed by carotenoids. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据