4.5 Article

Lower crosslinking density enhances functional nucleus pulposus-like matrix elaboration by human mesenchymal stem cells in carboxymethylcellulose hydrogels

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/jbm.a.35552

关键词

nucleus pulposus; tissue engineering; hydrogel; mesenchymal stem cells; carboxymethylcellulose

资金

  1. National Science Foundation [DMR 1207480]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1207480] Funding Source: National Science Foundation

向作者/读者索取更多资源

Engineered constructs represent a promising treatment for replacement of nucleus pulposus (NP) tissue. Recently, photocrosslinked hydrogels comprised of methacrylated carboxymethylcellulose (CMC) were shown to support chondrogenic differentiation of encapsulated human mesenchymal stem cells (hMSCs) and promote accumulation of NP-like extracellular matrix (ECM). The objective of this study was to investigate the influence of CMC crosslinking density, by varying macromer concentration and modification (i.e., methacrylation) percentage, on NP-like differentiation of encapsulated hMSCs. Constructs of lower macromer concentration (2%, w/v) exhibited significantly greater collagen II accumulation, more homogeneous distribution of ECM macromolecules, and a temporal increase in mechanical properties compared to hydrogels of higher macromer concentration (4%, w/v). Constructs of higher modification percentage (25%) gave rise to significantly elevated collagen II content and the formation of cell clusters within the matrix relative to samples of lower modification percentage (10% and 15%). These differences in functional ECM accumulation and distribution are likely attributed to the distinct crosslinked network structures of the various hydrogel formulations. Overall, CMC constructs of lower macromer concentration and modification percentage were most promising as scaffolds for NP tissue engineering based on functional ECM assembly. Optimization of such hydrogel fabrication parameters may lead to the development of clinically relevant tissue-engineered NP replacements. (c) 2015 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据