4.4 Article

Hydroxylamine Reduction to Ammonium by Plant and Cyanobacterial Hemoglobins

期刊

BIOCHEMISTRY
卷 50, 期 50, 页码 10829-10835

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi201425f

关键词

-

向作者/读者索取更多资源

Plants often face hypoxic stress as a result of flooding and waterlogged soils. During these periods, they must continue ATP production and nitrogen metabolism if they are to survive. The normal pathway of reductive nitrogen assimilation in non-legumes, nitrate, and nitrite reductase can be inhibited during low oxygen conditions that are associated with the buildup of toxic metabolites such as nitrite and nitric oxide, so the plant must also have a means of detoxifying these molecules. Compared to animal hemoglobins, plant and cyanobacterial hemoglobins are adept at reducing nitrite to nitric oxide under anaerobic conditions. Here we test their abilities to reduce hydroxylamine, a proposed intermediate of nitrite reductase, under anaerobic conditions. We find that class 1 rice nonsymbiotic hemoglobin (rice nsHb1) and the hemoglobin from the cyanobacterium Synechocystis (SynHb) catalyze the reduction of hydroxylamine to ammonium at rates 100-2500 times faster than animal hemoglobins including myoglobin, neuroglobin, cytoglobin, and blood cell hemoglobin. These results support the hypothesis that plant and cyanobacterial hemoglobins contribute to anaerobic nitrogen metabolism in support of anaerobic respiration and survival during hypoxia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据